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The discreteness of space

The discreteness of space

In the 1930s, Bronstein showed that general relativity and quantum
mechanics imply that the uncertainty ∆x of any length measurement
satisfies

∆x ≥ LPlanck :=

√
ℏG
c3

, (1)

where LPlanck is the Planck length (LPlanck ≈ 10−33 cm).

A well-accepted interpretation of Bronstein’s inequality is that below
the Planck length there are no intervals just points (the space has a
discrete nature).
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The discreteness of space

The discreteness of space

This interpretation has a precise mathematical translation: below the
Planck length, the space is a totally (or completely) disconnected
topological space, which means that the non-trivial connected subsets
are points.

Examples of totally disconnected spaces: Cantor set, the field of
p-adic numbers Qp, etc.

The choice of R as a model of the unidimensional space is not
compatible with the inequality (1) because R contains intervals of
arbitrarily small lengths.
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The discreteness of space

The discreteness of space

On the other hand, there are no intervals in Qp, i.e., the non-trivial
connected subsets are points. So Qp is the prototype of a ‘discrete
space’ with a very rich mathematical structure.

In the 80s, Volovich conjectured the p-adic nature of the space at the
Planck scale.

We use the term ” discrete space” to mean a totally disconnected
topological space.
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The discreteness of space

The naive approach

Many authors model the discreteness of the space by using a subset
of R3 whose points are located to a finite distance each other. For
instance, Z3 ⊂ R3, i.e., the space is a lattice of the standard
Euclidean space.

This approach is not convenient: this choice does not change the
Poincaré group of R3, and the discrete space (Z3) is not invariant
under all these symmetries.

Immediately, special and general relativity are compatible with this
notion of discreteness.
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p-Adic Analysis

p-Adic numbers

The field of p-adic numbers Qp is defined as the completion of the field of
rational numbers Q with respect to the p-adic norm | · |p, which is defined
as

|x |p =

{
0 if x = 0

p−γ if x = pγ
a

b
,

where a and b are integers coprime with p. The integer
γ = ordp(x) := ord(x), with ord(0) := +∞, is called the p-adic order of
x . Any p-adic number x ̸= 0 has a unique expansion of the form

x = pord(x)
∞∑
j=0

xjp
j ,

where xj ∈ {0, 1, 2, . . . , p − 1} and x0 ̸= 0.
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p-Adic Analysis

p-Adic Analysis

Since (Qp,+) is a locally compact topological group, there exists a Haar
measure dx , which is invariant under translations, i.e., d(x + a) = dx . If
we normalize this measure by the condition

∫
Zp

dx = 1, then dx is unique.

We will use Ω (p−r |x − a|p) to denote the characteristic function of the
ball Br (a) = a+ p−rZp, where

Zp =
{
x ∈ Qp; |x |p ≤ 1

}
is the unit ball.
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p-Adic Analysis

p-Adic numbers

We denote by L2 (Zp) := L2 (Zp, dx) , the C-vector space of all the
complex valued functions g satisfying

∥g∥2 =

 ∫
Zp

|g (x)|2 dx


1
2

< ∞,

where dx is the normalized Haar measure on (Qp,+).
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p-Adic Analysis

The Dirac-Von Neumann formulation of QM

The states of a quantum system are described by non-zero vectors
from H, a separable complex Hilbert space called the space of states.

Each observable corresponds to a unique linear self-adjoint operator in
H.

The most important observable of a quantum system is its energy H .

Let Ψ0 ∈ H be the state at time t = 0 of a certain quantum system.
Then at time t the system is represented by the vector Ψ (t) = U tΨ0,
where

U t = e−itH , t ≥ 0,

is a unitary operator called the evolution operator. The vector
function Ψ (t) is the solution Schrödinger equation

i
∂

∂t
Ψ(t) = HΨ(t) .
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p-Adic Analysis

The Dirac-Von Neumann formulation of QM

The choice Ψ (t) ∈ H = L2 (R) implies that the space is continuous,
i.e., given two different points x0, x1 ∈ R there exists a continuous
curve X (t) : [0, 1] → R such that X (0) = x0, X (1) = x1.

p-Adic QM is quantum mechanics in the Dirac-von Neumann, with
H =L2(Zp), H =L2(Qp).

The Dirac-von Neumann formulation of QM does not rule out the
possibility of choosing a ‘discrete space,’ i.e., we can take
H =L2(Zp); in this case the space Zp is a completely disconnected
topological space.

Any continuous function (curve) from R into Zp is constant. Any
continuous function maps connected subsets into connected subsets.
Then given two points a, b ∈ Zp, with a ̸= b, there is no a continuous
curve X (t) : [0, 1] → Zp such that X (0) = a and X (1) = b.
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p-Adic Analysis

p-adic QM

This implies that the word line notion, which is a fundamental pillar
in the formulation of special and general relativity, does not exist if we
assume, as a model of physical space, a totally disconnected space.

Consequently, the p-adic QM is incompatible with the special and
general relativity.

p-Adic QM is a model of the standard QM assuming the discreteness
of the space.

The testability theories like p-adic QM, string theory, and quantum
gravity, that work at the Planck scale require accessing incredibly high
energy levels. So, the physical content of such theories is in question.
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p-Adic Analysis

p-adic QM

Recently, we show that p-adic Schrödinger equations are related to
continuous-time quantum walks (CTQWs) on graphs. This directly
connects p-adic QM and quantum computing; such a connection does
not require accessing incredibly high energy levels.

This talk aims to show that certain 2-adic Schrödinger equations
describe continuous versions of Farhi-Gutmann CTQWs on arbitrary
graphs
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Quantum nonlocality

Quantum nonlocality

We select an evolution operator eτH0 , τ ≥ 0, so that it is a Feller
semigroup. Then u(x , t) = eτH0u0(x) is the solution of the evolution
equation (a p-adic heat equation) of the form

∂

∂τ
u (x , τ) = H0u (x , τ) , x ∈ Qp, τ ≥ 0, (2)

with initial datum u (x , 0) = u0 (x) . The Feller condition implies the
existence of Markov process in Qp, with discontinuous paths, attached to
equation (2).
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Quantum nonlocality

Quantum nonlocality

We now apply the Wick rotation τ = it, t ≥ 0, with i =
√
−1, and

Ψ (x , t) = u (x , it), to (2) to obtain the free, p-adic Schrödinger equation:

i
∂

∂t
Ψ(x , t) = −H0Ψ(x , t) , x ∈ Qp, t ≥ 0.

It is relevant to mention that all known operators H0 appearing in the
p-adic heat equations are non-local.
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Quantum nonlocality

Quantum nonlocality

The simplest choice for H0 is Dα, α > 0, the Taibleson-Vladimirov
fractional,

Dαφ (x) =
1− pα

1− p−α−1

∫
Qp

φ(z)− φ(x)

|z − x |α+1
p

dz ,

for φ a locally constant function with compact support. To see the
non-local nature of this operator, we take φ (x) = 1 if |x |p ≤ 1, otherwise
φ (x) = 0, then

Dαφ (x) =


− 1−pα

1−p−α−1

( ∫
|z|p>1

dz
|z|α+1

p

)
if |x |p ≤ 1

1−pα

1−p−α−1
1

|x |α+1
p

if |x |p > 1.
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Quantum nonlocality

Quantum nonlocality

By definition, p-adic QM is a nonlocal theory. Hence, the violation of
Bell’s inequality (i.e., the paradigm: the universe is not locally real)
does not cause any trouble in p-adic QM.

The mentioned paradigm causes serious trouble for standard QM
since standard QM is supposed to be a local theory, and abandoning
the idea that objects have definite properties independent of
observation seems to have profound epistemological consequences.

Do p-adic Schrodinger equations describe physical systems?
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Quantum nonlocality

The double-slit experiment

In Zúñiga-Galindo W. A., The p-Adic Schrödinger equation and the
two-slit experiment in quantum mechanics. Ann. Physics 469 (2024),
Paper No. 169747,

a p-adic model of the double-slit experiment was studied; in this model,
each particle goes through one slit only. A similar description of the
two-slit experiment was given in

Aharonov Y., Cohen E., Colombo F., Landsberger T., Sabadini I., Struppa
D., and Tollaksen J., Finally making sense of the double-slit experiment.
Proc. Natl. Acad. Sci. U. S. A. 114, 6480 (2017):

“Instead of a quantum wave passing through both slits, we have a localized
particle with nonlocal interactions with the other slit. ” in our paper, the
same conclusion was obtained, but in the p-adic framework, the nonlocal
interactions are a consequence of the discreteness of the space Q3

p.
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Quantum nonlocality

Breaking of the Lorentz symmetry and the violation of
Einstein causality

Taking R×Q3
p as a space-time model, in p-adic QM, the Lorentz

symmetry is broken, since the time and position are not
interchangeable.

In the last thirty-five years, the experimental and theoretical studies of
the Lorentz breaking symmetry have been an area of intense research.
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Quantum nonlocality

Breaking of the Lorentz symmetry and the violation of
Einstein causality

In

Zúñiga-Galindo W. A., p-adic quantum mechanics, the Dirac equation,
and the violation of Einstein causality. J. Phys. A 57 (2024), no. 30,
Paper No. 305301, 29 pp.,

we introduced a p-adic Dirac equation that shares many properties with
the standard one. In particular, the new equation also predicts the
existence of pairs of particles and antiparticles and a charge conjugation
symmetry.
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Quantum nonlocality

Breaking of the Lorentz symmetry and the violation of
Einstein causality

The p-adic Dirac equation admits space-localized planes waves
Ψrnj (t, x) for any time t ≥ 0, which is, supp Ψrnj (t, ·) is contained
in a compact subset of Q3

p. This phenomenon does not occur in the
standard case.

We compute the transition probability from a localized state at time
t = 0 to another localized state at t > 0, assuming that the space
supports of the states are arbitrarily far away.

It turns out that this transition probability is greater than zero for any
time t ∈ (0, ϵ), for arbitrarily small ϵ.

Since this probability is nonzero for some arbitrarily small t, the
system has a nonzero probability of getting between the mentioned
localized states arbitrarily shortly, thereby propagating with
superluminal speed in R×Q3

p.
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Quantum nonlocality

Quantum nonlocality and faster-than-light communication

In 1988, Eberhard and Ross, using R× R3 as a space-time model,
showed that the relativistic quantum field theory inherently forbids
faster-than-light communication.

This result is known as the no-communication theorem. It preserves
the principle of causality in quantum mechanics and ensures that
information transfer does not violate special relativity by exceeding
the speed of light.

So, if the space is not discrete at the Planck length, then
faster-than-light communication is impossible.
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Quantum nonlocality

Quantum nonlocality and faster-than-light communication

The no-communication theorem does not rule out the possible
superluminal speed in R×Q3

p.

We have a theory on the space-time R× R3, and want a copy of it
on the space-time R×Q3

p. This is possible if there exists

Qp ↪→ R preserving the algebraic, topological and

analytic properties of Qp.

Such an arrow does not exist!

The no-communication theorem under the hypothesis that
space is completely disconnected is an open problem.
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2-Adic Schrödinger equations

2-Adic Schrödinger equations and quantum networks

In p-adic QM, the Schrödinger equations are obtained from p-adic
heat equations by performing a Wick rotation.

These equations are associated with Markov processes, which are
generalizations of the random motion of a particle in a fractal, such
as Zp or Qp.

In
Zúñiga-Galindo, W. A., Ultrametric diffusion, rugged energy
landscapes and transition networks. Phys. A 597 (2022), Paper No.
127221, 19 pp.,
we introduce a new type of stochastic networks, which are p-adic
continuous analogs of the standard Markov state models constructed
using master equations.
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2-Adic Schrödinger equations

2-Adic Heat equations and ultrametric networks

The evolution equation

du (x , τ)

dτ
=

∫
K

{j(x | y)u(y , τ)− j(y | x)u(x , τ)} dy , τ ≥ 0, x ∈ K, (3)

is a 2-adic heat equation: there exists a probability measure pτ (x , ·),
t ∈ [0,T ], with T = T (u0), x ∈ K, on the Borel σ-algebra of K, such that
the IVP:

u (·, τ) ∈ C1 ([0,T ] , C (K,R)) ;

du(x ,τ)
dτ =

∫
K
{j(x | y)u(y , τ)− j(y | x)u(x , τ)} dy , τ ∈ [0,T ] , x ∈ K;

u (x , 0) = u0 (x) ∈ C (K,R+) .
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2-Adic Schrödinger equations

2-Adic Heat equations and ultrametric networks

has a unique solution of the form

u(x , τ) =

∫
K

u0(y)pτ (x , dy) .

In addition, pτ (x , ·) is the transition function of a Markov process X whose
paths are right continuous and have no discontinuities other than jumps.
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2-Adic Schrödinger equations

2-Adic Schrödinger equations coming from master
equations

We now perform a Wick rotation (τ = it, t ≥ 0, with i =
√
−1, and

Ψ (x , t) = u (x , it)) in (3) to obtain a Schrödinger equation.

It is more convenient to change the notation. We set A(x , y) = j(x | y),
B (x , y) = j(y | x), where A(x , y),B (x , y) are non-negative, continuous,
symmetric functions (A(x , y) = A (y , x), B(x , y) = B (y , x)).

With this notation, Schrödinger equation takes the form

i
∂

∂t
Ψ(x , t) = −

∫
K

{A(x , y)Ψ(y , t)− B (x , y)Ψ(x , t)} dy

for t ≥ 0, x ∈ K.
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2-Adic Schrödinger equations

2-Adic Schrödinger equations coming from master
equations

The operator

Ψ (x , t) → −
∫
K

{A(x , y)Ψ(y , t)− B (x , y)Ψ(x , t)} dy

= : HΨ(x , t) ,

for t ≥ 0, is self-adjoint on L2(K).
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2-Adic Schrödinger equations

2-Adic Schrödinger equations coming from master
equations

Now since H is self-adjoint on L2(K), by Stone’s theorem on
one-parameter unitary groups, there exists a one-paremeter family of
unitary operators

{
e−itH}

t≥0
, such that Ψ (x , t) = e−itHΨ0 (x) is the

unique solution of the Cauchy problem
Ψ(·, t) ∈ L2(K), t ≥ 0; Ψ (x , ·) ∈ C1(R+), x ∈ K

i ∂
∂tΨ(x , t) = HΨ(x , t) , x ∈ K, t ≥ 0

Ψ (x , 0) = Ψ0 (x) ∈ L2(K).

(4)
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2-Adic Schrödinger equations

Construction of CTQWs

We now take K =
⊔

I∈G0
l

(
I + 2lZ2

)
, where G 0

l is a finite subset of Z2,

ΨI (x) := 2
l
2Ω
(
2l |x − I |2

)
, with Ω

(
2l |x − I |2

)
denoting the characteristic

function of the ball I + 2lZ2, and Ψ (x , t) = e−itHΨI (x) as before.
Notice that

1 = ∥ΨI (x)∥2 = ∥Ψ(x , t)∥2 =

√√√√∫
K

|Ψ(x , t)|2 dx ;

then, by Born’s rule, ∫
B

|Ψ(x , t)|2 dx

gives the probability of finding the system in a state supported in B ⊂ K
(a Borel subset) given that at time zero the state of the system was given
by ΨI (x).
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2-Adic Schrödinger equations

Construction of CTQWs I

Therefore,

π̃
J,I

(t) =

∫
J+2lZ2

|Ψ(x , t)|2 dx (5)

is a transition probability between a state supported in the ball I + 2lZ2 to
a state supported in the ball J + 2lZ2 at the time t. Notice that∑

J∈G0
l

π̃
J,I

(t) = 1. (6)

Then, if we identify the ball I + 2lZ2 with vertex I ∈ G 0
l of a complete

graph, the matrix
[
π̃

J,I
(t)
]
defines a quantum Markov chain on the graph

(i.e. a CTQW).

W. A. Zúñiga-Galindo p-Adic Quantum Mechanics 30 / 40



2-Adic Schrödinger equations

Construction of CTQWs

This approach was introduced in
Zúñiga-Galindo W. A., Mayes Nathanniel P., p-Adic quantum mechanics,
infinite potential wells, and continuous-time quantum walks.
arXiv:2410.13048.

The drawback of this approach is that it requires the solution of Cauchy
problem (4), and that the constructed CTQWs are exclusively defined on
complete graphs.
In

Zúñiga-Galindo W. A., 2-Adic quantum mechanics, continuous-time
quantum walks, and the space discreteness,arXiv:2502.16416,

we provide a different approach to the construction of CTQWs based on
the discretization of (4)
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Quantum networks

Quantum networks (Standard Construction)

From now on, H denotes the Hilbert space C2l , with norm ∥·∥, and
canonical basis as {|eI ⟩}I∈Gl

.

We assume that H(l) is a Hermitian matrix so exp(−itH(l)) is unitary
matrix. We identify Gl with an graph with vertices I ∈ Gl .
We define the transition probability πI ,J (t) from J to I as

πI ,J (t) =
∣∣∣⟨eI | e−itH(l)

|eJ⟩
∣∣∣2 , for J, I ∈ Gl .

Note that ∑
I∈Gl

πI ,J (t) =I∈Gl

∣∣∣⟨eI | e−itH(l)

|eJ⟩
∣∣∣2 = 1.

The continuous-time Markov chain on Gl determined by the transition
probabilities [πI ,J (t)]I ,J∈Gl

, is the quantum network associated with the
discrete 2-adic Schrödinger equation. This construction works if we replace
Gl with a subset G 0

l of it.
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Quantum networks

CTQWs on graphs

The CTQWs on graphs play a central role in quantum computing. We
show that this type of CTQWs can be obtained from a suitable 2-adic
Schrödinger equation. Let G be an undirected, finite graph with vertices
I ∈ G 0

l ⊂ Gl , and adjacency matrix [AJI ]J,I∈G0
l
, with

AJI :=


1 if the vertices J and I are connected

0 otherwise.

We fix and l such that #G 0
l ≤ 2l , and set

K = Kl :=
⊔
I∈G0

l

(
I + 2lZ2

)
, (7)

which is an open compact subset of Z2.
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Quantum networks

CTQWs on graphs

We also define

J(l)(x , y) = 2l
∑
J∈G0

l

∑
K∈G0

l

AJKΩ
(
2l |x − J|p

)
Ω
(
2l |y − K |p

)
, (8)

x , y ∈ Z2, where [AJI ]J,I∈G0
l
is the adjacency matrix of graph G. Notice

that J(l)(x , y) is a real-valued test function on Kl ×Kl . We now introduce
the linear operator

JGφ (x) :=

∫
Kl

{φ (y)− φ (x)} J(l)(x , y)dy , for φ ∈ C (Kl) .

This operator extends to linear bounded operator in L2(Kl).
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Quantum networks

CTQWs on graphs

The Shrödinger equation attached to operator

JGφ (x) =

∫
Kl

{φ (y)− φ (x)} J(l)(x , y)dy

is 
i ∂
∂tΨ(x , t) = −mJGΨ(x , t) , x ∈ Kl , t ≥ 0

Ψ (x , 0) = Ψ0 (x) ∈ L2 (Kl) .

The discretization is obtained by computing the matrix of JG |Xl
assuming

that
Ψ(l) (x , t) =

∑
I∈G0

l

Ψ
(l)
I (t) 2

l
2Ω
(
2l |x − I |2

)
.

We identify Ψ(l) (x , t) with the column vector
[
Ψ

(l)
I (t)

]
.
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Quantum networks

CTQWs on graphs

We denote by Xl (Z2) ⊂ Dl (Z2), the C-vector space consisting of all the
test functions supported in Kl having the form

φ (x) =
∑
J∈G0

l

φJ2
l
2Ω
(
2l |x − J|2

)
, (9)

where φJ ∈ C.

JG : Xl (Z2) → Xl (Z2) is a linear bounded operator satisfying
∥JG∥ ≤ 2γG , where γG := maxI∈G0

l
γI , with γI :=

∑
J∈G0

l
AIJ .

Notice that γI = val(I ), the valence of I , i.e., it is the number of
connections from I to its other vertices.
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Quantum networks

CTQWs on graphs

The discretization is obtained by computing the matrix of JG |Xl
. We

identify Ψ(l) (x , t) with the column vector
[
Ψ

(l)
I (t)

]
. The computation of

the matrix of JG |Xl
:

JG

(
2

l
2Ω
(
2l |x − I |2

))
=
∑
J∈G0

l

{AJI − γI δJI} 2
l
2Ω
(
2l |x − J|2

)
,

where δJI is the Konecker delta.
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Quantum networks

CTQWs on graphs

We set
H(l) = −mJ

(l)
G =

[
H

(l)
J,I

]
J,I∈G0

l

, (10)

where

H
(l)
J,I =


−m if J ̸= I and AJI = 1

0 if J ̸= I and AJI = 0

mval(I ) + VI if J = I .

The discretization of the 2-adic Schrödinger equation takes the form

i
∂

∂t

[
Ψ

(l)
I (t)

]
= H(l)

[
Ψ

(l)
I (t)

]
, t ≥ 0. (11)
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Quantum networks

The Farhi-Gutmann CTQWs

Let G be a finite graph. We take G 0
l = V (G), the set of vertices, and

Ψ (t) :=
∑

I∈V (G)

Ψ
(l)
I (t) |eI ⟩ =

∑
I∈V (G)

⟨eI | Ψ(t)⟩ |eI ⟩ ,

with
∥Ψ(t)∥2 =

∑
I∈V (G)

|⟨eI | Ψ(t)⟩|2 = 1.

Now, we set ⟨eI | Ĥ |eK ⟩ := H
(l)
I ,K . Then, equation (11) can be rewritten as

i
∂

∂t
⟨eI | Ψ(t)⟩ =

∑
K∈V (G)

⟨eI | Ĥ |eK ⟩ ⟨eK | Ψ(t)⟩ , (12)

which is the Schrödinger equation for the Farhi-Gutmann CTQWs.
Farhi E., Gutmann S., Quantum computation and decision trees. Phys.
Rev. A (3)58(1998), no.2, 915–928.
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Questions?

Thank you!
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