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Preliminaries
Second order formulation (Finstein gravity):

® metric tensor g,
® curvature parametrized by Riemann tensor:
R, =0,I%, —9,I, + FZAFQG —T0,I),
® torsion: T:‘V = Ff;l, - F,),‘# =0
* Christoffel Symbols: '}, = 292 (8u9up + 0ugpp — Opguv)
® action: Sgg = ﬁ [ d*z\/=gR — Einstein Field Equations

First order formulation:

a ab
M ’wH

® curvature parametrized by the curvature 2-form:

— c c
R/u/ab = auwl/ab - al/wuab — WpacW, 'y — wuacwu b

° A - a _ a _ a a ,c__ a ,c
torsion: T,* = due,’ — Ove, +w e, —w, e,

® vierbein and spin connection e

® action: S = ﬁ Ik %eabcde“ A e? A R (Palatini action)

® — Finstein Field Equations + Torsionless condition



Finstein 4d Gravity as a Gauge Theory

The algebra

see for details:

Utiyama ’56, Kibble

61,

Kaku-Townsend-

Nieu/zen

® Employ the first order formulation of GR MecDowell-Mansuri
. p Ch ddine- West

® Gauge theory of Poincaré group ISO(1,3) amsgt EZZZ Weiff

ITvanov-Niederle
Kibble-Stelle
Witten

Wilczek 98, Ortin

® Ten generators (Translations P, & LT Mgy)

7,
7,
7,
80,
82,
85,
88,
04,

Roumelioti-Stefas-Z ’24

Generators satisfy the commutation relations:

[Maba Mcd] - naCMdb - anMda - nandb + nbnda
[PavMbc]:nach_nacha [Paan]:O

where 74, = diag(—1,+1,+1,+1) and a,b,e,d=1,...,4.



The gauging procedure

® Introduction of a gauge vector field for each generator. For the
Poincaré group, I50(1, 3):
— 4 fields e, for the translation operators F,
— 6 fields wﬂab for the local SO(1,3) (LT)

® The gauge connection is:
Au(x) = e (x) Py + %wu"b(:c)Mab
® Transforms in the adjoint rep, according to the rule:
0A, = 0ue+ Ay, €
® The gauge transformation parameter, e(z) is expanded as:
e(a) = £ (x)Po + 52" (2) Map

® (Combining the above — transformations of the fields:

a a bya ab
de, ! = 08" — e,/ A% +w, &
ab __ ab a cb b ca
ow,”” = O = Nw,” + N w,

¢ Gauge transf «» diffeo transf (imposing cond. torsionless, on
shell)



Curvature and Torsion

® Curvatures of the fields are given by:
Ry (A) =0,A, —0,A, +[AL, A
® Tensor R, is also valued in Poincaré algebra:
R (A)=T,,*P., + %RW‘“’Mab

® (Combining the above — component tensor curvatures:

a __ a a b a b a
r,"= oue,” — ayeu +e w —ejwy

ab __ ab ab chb, , a ac b
R,," = 0w, — aywu —w, W+ w, Wy,

Palatini action is considered

® Torsionless condition + Field equations



Gauge theory of SO(2,3)

Instead of the Poincaré group - Anti-de Sitter group: SO(2,3)

Same amount of generators BUT they can be written on equal
footing (semisimple group):

[MAB, MCD] = nAcMDB - nBcMDA - nADMCB + UBDMCA

nap is the 5-dim Minkowski metric with two timelike coefficients
(Ist and 5th) and A,...,D=1...5
Perform a splitting of the indices A = (a, 5)

Define My, = My, and M5 = LP, [m]=L""

Gauge connection: A, = 30, AP Myp = %wu‘leab +e, P,
~ ab __ ab A ab a
where w0, =w, and w,"” = me,

The same for the field strength tensor RWAB:

p oab _ ab 2, [a, b] p ab _ a
Ruu _R;w +2m elle,, Ruu —mTW



Consider the following SO(2, 3) invariant quadratic action:

1. P
4 E AB D
S = aAds/d x(my EABCDEZR/H/ Rpg E“VﬂCT‘F

+A (vPye +m*2)>

e ¥ an auxiliary scalar field in the vector rep
® vector taken to be gauge fixed towards the 5-th direction:

y=y"=(0,0,0,0,m™").

the non-vanishing value y°(x) is responsible for the symmetry
breaking of SO(2,3) to the SO(1, 3)

GAdS A ~
S = 5 /d4xe“”p”Rw“bRP;deabcd

_ aszdS /d4.7§‘6'uypg6abcd (L:RR —+ m2£eeR + m4£eeee)

Lrr: Gauss-Bonnet - no contribution to the e.o.m.

Lccr: Palatini action (torsionless + Einstein Field Equations)
Leeee: Plays the role of cosmological constant

Solution of Einstein Field Equations is the Anti-de Sitter space
If m — 0: Minkowski spacetime (flat solution).




Conformal 4d Gravity as a Gauge Theory

® Group parametrizing the symmetry: SO(2,4)

® 15 generators: 6 LT My, 4 translations, P,, 4 conformal boosts
K, and the dilatation D

® Group generators satisfy the following algebra:

[Mab, Mea) = NbeMag + NaaMpe — NacMpa — MbaMac,
[Map, Pe] = NpePa — Nac P,
(May, Ke] = pe Ko — Nac K,
[Pa, D] = Pa,
[Ka, D] = —Ka,
(Ko, Po] = =2(NapD + May),



Following the same procedure one calculates transf of the gauge
fields and tensors after defining the gauge connection

Action is taken of SO(2,4) invariant quadratic form

Initial symmetry breaks under certain constraints resulting to the
Weyl action Kaku, Townsend, Nieu/zen 77,

Fradkin, Tseytlin 85

Initial symmetry breaks spontaneously by introducing a scalar in
the adjoint rep fixed in the dilatation direction, or by two scalars
in vector reps.

Roumelioti, Stefas, Z ’2)



SSB by using a scalar in the adjoint representation
Gauge connection:

1
Ay = w, "My + €, Py + b,"K, + a,D,

2
Field strength tensor:
1 .
F,uu = iRuuabMab + RuuaPa + R;LuaKa + R,uuDa
where

R;Luab _ aﬂwyab 7 auw#ab o w#acwucb + wyacwﬂcb _ 86[M[aby]b]
= R — 8ep,"b,)",

RW“ =0ue," —0ve, " + wuabeyb — wyabeub —2ap,e,)"

0)a ~ a

= L(W) — 20,[”61,] 5

Ru® = 0uby® — 9yby + w, by — w, by + 2ay,b,)"
= i) (b) + 2ay,b,1%,

RHV = 8,/1,, — 81,&“ + 4€[Mab,,]a,



We start with the parity conserving action, which is quadratic in
terms of the field strength tensor and introduce a scalar in the rep 15

Sso(2,4) = acc/d4l' [tr e"PImPF,, Fpe + (¢2 — m_2]l4)} ,
The scalar expanded on the generators is:

¢ = ¢ My + ¢ Py + ¢ K, + 6D,

We pick the specific gauge in which ¢ is diagonal of the form
diag(1,1,—1,—1). Specifically we choose ¢ to be only in the direction
of the dilatation generator D:

$2=m~21,
—— 0= —2m~1D.

¢=¢"=¢D
The resulting broken action is (after employing anticommutator
relations and the traces over the generators):

aca 4 b d
SSO(L?)) = 4 d meuypgeabcdRuua Rpac



The a,, is not present in the action, so we can set it equal to zero.

R, is also absent so we can also set it equal to zero
= 0,4, — 0,4 T, = 0 22
Ry = 0uy — 0yay + 4ep,“by)g =0

ep g — e, =0
We examine two possible solutions of the above equation:

L d b'ua = ae,*, Chamseddine 03
L4 b#a = —% (R#a + %Reﬂa) Kaku, Townsend, Nieu/zen, 78
Freedman, Van Proyen ‘Supergravity’ ’12

The first choice leads to the Einstein-Hilbert action, while the second
leads to Weyl action.

— Similar results are obtained using two scalars in the vector rep.



FEinstein-Hilbert action

® When b,% = ae,, the broken action becomes:

aca 4 b d
SSO(1,3) = 4 /d weuypaeabcdRyua I'zpcrC -

aca

SSO(1,3) _ 2¢G /d4$6“'/p06abcd Rl(LOV)abRg?T)cd o 16m2aRfLOV)“bepcegd+

+ 64m4a26#“eyb6pc€ad}
This action consists of three terms: one G-B topological term,

the E-H action, and a cosmological constant. For a < 0 describes
GR in AdS space.



Weyl action
® When b,* = —3(R,* + £ Re,"), the broken action becomes
1
g — aca /d4$6u”p0€abcd {RLOV)ab -5 (éy[aRyb] _ éy[aRub]) +
1
+ gRéH[“éyb]}
1
|:R/()(¢)j-)Cd _ 5 (ép[CRad] _ éa[cde]) +
1
+ gRép[Céafﬂ],

where €,% = me,* is the rescaled vierbein. The above action is
equal to

aca
== / d* 2?7 €qpedCrun*® Cpo ™

= 2acg/d4x (R#VRVM — ;R2> ,

where CW‘“’ is the Weyl conformal tensor.



The NC' framework & gauge theories

Quantization of phase space of z?, p;— replaced by Herm
operators: ', p; satisfying:[*, p;] = ihd}
Noncommutative space — quantization of space: z* — replace
with operators &' (€ A) satisfying: [£*, 7] = 16" (&)

Connes 94, Madore ’99

Antisymmetric tensor 0% (2) - defines the NC of the space
® Canonical case: 0% (%) =0Y,4i,j=1,...,N
For N =2 — Moyal plane
® Lic-type case: 0% (%) = Cijka?k, ,j=1,...,N
For N = 3 — Noncommutative (fuzzy) sphere (SU(2))
NC framework admits a matrix representation (operators)
® Derivation: e;(A) = [d;, A], d; € A
® Integration — Trace For Reviews:
Szabo ’01, Douglas-Nekrasov 01



The NC' Gauge Fields & transformations

Madore-Wess et al. 00

Consider a field ¢(X,) on a fuzzy space described by NC coordinates
X,. An infinitesimal gauge transformation

0¢(Xa) = A(Xa)P(Xa) ,

where A(X,) is a gauge transf parameter:
e U(1) if A(X,) is antihermitian function of X,
e U(P) if A(X,) is valued in Lie algebra of P x P matrices

Coordinates ¢(X,) are invariant under gauge transformation, i.e.
§(X,) = 0. Therefore:

° §(Xa¢) = Xa)‘(Xa)gb 7é )‘()(a))(oz(l5

° 6(Xa¢) == A(Xa)5¢a¢a
which holds if: 6(X,) = [MXa), ¢a]

o where X, = X, + A, the covariant coordinate — NC analogue of
cov. der. and A, are interpreted as gauge fields



The NC' Gauge Fields & transformations (2)

Note that the transformation of A, is:

0As = —[Xa, Al + [N, Adl,
supporting the interpretation of A, as gauge field.
Correspondingly, define:

Fap :[Xa’ Ab] - [Xba Aa] + [Aav Ab] =—C A
:[(ba) ¢b] - Ccab¢cy
an analogue of the field strength tensor whose transformation is given

by:
6Fab = [)\a Fab]



Non-Abelian case

> In nonabelian case, where are the gauge fields valued?

® Let us consider the CR of two elements of an algebra:

[e, A] = [T, ABTE] = { A ABYTA, TP+ 2[4, ABJ{TA, TP

2 [
® Not possible to restrict to a matrix algebra:

last term neither vanishes in NC nor is an algebra element

® There are two options to overpass the difficulty:
C’im’c’—G’oéanin-Konjik—Radovanm)ic’ 18

® Consider the universal enveloping algebra

® Extend the generators and/or fix the rep so that the
anticommutators close

> We employ the second option



The 4d covariant noncommutative space

Motivation for a 4d covariant NC space

® Constructing field theories on NC spaces is non-trivial: NC
deformations break Lorentz invariance

® such an example is the fuzzy sphere (2d space) - coords are

identified as rescaled SU(2) generators Madore "92
Hammou-Lagraa-Sheikh Jabbari *02

Vitale- Wallet ’13, Vitale 1}
Jurman-Steinacker 14
Chatzistavrakidis-Jonke-Jurman-Manolakos-Manousselis-GZ 18

® Previous work on 3d NC gravity on the covariant spaces R?/{(R}\’Q)

® Need of 4d covariant NC space to construct a gravity gauge
theory



Construction of the 4d covariant NC space

e dS,: homogeneous spacetime with constant curvature (positive)
® Described by the embedding n4Z X4 X5 = R? into Mj

® Aim for a NC version of dS4

Introduce a natural minimal length

Assign the spacetime coordinates to elements of the 4-d dS
group, SO(1,4)



Snyder’s Model 47

Snyder 47

® The SO(1,4) generators, Jy,n, m,n =0,...,4, satisfy the
commutation relation:

[Jmna Jrs] = i(nmrjns + MnsImr — Mnrdms — nmsjnr)

® Consider decomposition of SO(1,4) to max subgroup, SO(1, 3)

® Convert the generators to physical quantities by setting
045 = hJij , Xy = AMia; A a length parameter

® Thus, the commutation relations regarding the operators ©,,,
and X, are:

(i, Or] = iR (NikOj1 + 1j1Oix — MjxOit — MOy )
(04, Xi] = ih (i X; — 0 Xi)
i\2
[Xi, Xj] = =0

® The noncommutativity of coordinates becomes manifest



Yang’s Model 47

® Extending covariance to include also momenta generators
— use a group with larger symmetry — min extension: SO(1,5)
Yang 47
Kimura ’02, Heckman-Verlinde 15
Steinacker 16
Sperling-Steinacker ’17,’19
Buri¢-Madore 14,15
Manolakos-Manousselis-GZ ’19,°21

® The SO(1,5) generators, Jysn, M, N =0,...,5, satisfy the
commutation relation:

[Jun, Ips]) = i(mvpIns + vsdup — anvpdus — NusJInp)

e Employ a 2-step decomposition SO(1,5) D SO(1,4) D SO(1,3)



Yang’s Model ’47 (Continued)

® Convert the generators to physical quantities by identifying
Oij = hij, Xi=Mis, Pi=%Ju, h=Jus

® Thus, the commutation relations regarding all the operators
Ouu, X, P, h are:

[Guw epo] = ih(nup@ua + nuaeup - nupeua - 77u0®up) s
O, X,| = th(Nup Xy — M0pX,)
(15 Ppl = ih(np Py — M pPp)

D A2
[Py, P,)] = ZF@”V, (X, X)) = ZE@uw
h A2
[Py, h] = —ZFXM, (X, h] = z%PN,
[Py, X,] = ilmuh, ©uv,h] =0

® The above relations describe the noncommutative space



Noncommutative gauge theory of 4d gravity

Formulation of gravity on the above space

Noncommutative gauge theory construction + the procedure
described in the Einstein gravity case

Kimura ’02, Heckman-Verlinde 15

Gauge the isometry group of the space, SO(1,4) as seen as a
subgroup of the SO(1,5) we ended up

Anticommutators do not close — enlargement of the algebra +
fix the representation
Aschieri-Castellani "09

Chatzistavrakidis-Jonke-Jurman-Manolakos-Manousselis-Z 18
Noncommutative gauge theory of SO(2,4) x U(1)

Manolakos-Manousselis-Z ’19, 21
Roumelioti-Stefas-Z ’2)



® The generators of the group are represented by combinations of
the 4 x 4 gamma matrices

® Specifically, the generators are expressed by:
7

® six Lorentz rotation generators: My, = 1 [Va, 7o)

® four generators for conformal boosts: K, = %’ya(l +75)

1
® four generators for translations: P, = —5%(1 —75)

® one generator for special conformal transformations: D = 57
® one U(1) generator: 1

® The above expressions of the generators allow the calculation of
the algebra they satisfy:

[May, Meq) = beMad 4 NaaMye — NaeMpa — MpaMac,
[Kmpb] =-2 (nabD + Mab)a [PavD] =Py, [KaaD] = —K,,
[Maba Kc] = ncha - nacha [Maba Pc] = nbcPa - nach



® Generators satisfy the following anticommutation relations:

Smolin 03

{Map, Mea} = % (Nachbd — MbeTad) — i€abea D,
{Map, P} = +ieapeaP?,
{May, Ko} = —i€qpeaK?,
{Map, D} = 2Meap D,
{Pa; Kp} = 4MapD + 1ap,
{Kao, Kp} = {Pa, P} = —1ab,
{Pua, D} = {K,, D} =0.

® We will introduce gauge fields in a motivated way

® Use the general treatment of NC gauge theories



NC' gauge theory

Manolakos-Manousselis-Z ’21

Since the gauge group is determined to be SO(2,4) x U(1) , we
can move on with the gauging procedure.

Consider the covariant coordinate X, = X, + A,

Determine approprlate covariant field strength tensor

R = (X X)) = 500,

where @W = Ouy + By, the covariant noncommautative tensor

For the SSB to take place we:

® Introduce scalar field ®(X) belonging in the 2nd rank antisym. of
SO(4) , charged under U(1)— U(1) breaks and doesn’t appear in
final action

® Gauge fix ®(X) in the direction that leads to Lorentz group



Gauge connection and field strength tensor decompose as:

AuX)=e @ Pa+w,* ® Map + b, ® Ko + @, ® D+ 0a, ®14.

Ruv(X) =R, ® Pa+ R,2° ® Mgy + R, @ Ko+ Ry ® D+ Ry @14
The component curvatures:

b

1
Ry = [Xpu, a] = [Xu, ap] + [ap, av] + [b,7, bua] + [ap, au] + §[wM“ , Woab)

ih
Az
Ryy = [Xp,aw] + [ap, ] = [(Xu, p] = [av, au) = i{bua, %} + i{bua, e, }

+ [euaveua] - B,ul/

1 1h ~
+ 5€abcd[w,u,ab7wu6d} - FB[J‘V
R,u,ua = [XH7 bua] + [a;“ bua] - [XV7 b,u,a] - [aV7 bua} + i{bubkuab} - i{bl/b7wuab}

e e ih
+ Z{a//n eya} - Z{alh eﬂa} + Eabcd([euba wVCd] - [eub7 qud]) - ﬁBuua
R,u,ua = [XH7 eua] + [aH7 eua] - [XV7 ey,a - [al’v eua} + 7:{b,u,av dl’} - i{buav a’M}
. . ih ~
- ([bub7 qud] - [bub7 qud])":abcd - Z{wuaby eub} + Z{wyab? e,ub} - ﬁBuya

Ruuab = [Xﬂ«vwnab} + [aﬂkuab] - [thwy.ab] - [avvwng:b] + Zi{bua7 bl/b} + ([bpcr eud}

1, ~ .
— 055 e, eabea + 5([%7%”1} = (v, w, ) eabea + 2i{w, %, w,’  }

) ih
+ 22{6;", eub} - FBuuab



Symmetry breaking
Introduction of auxiliary field ®(X) charged under U(1):

P=¢" QP+ ¢ @My +¢* @K, +¢R@L+¢®D
into the action:
S = Trtrg AO(X)RuwRpoe™ P + n(@(X)? = A Iy @ Ly),

induces a symmetry breaking:

V2
Sbr =Tr <4€abcdR/“?

b d D vpo
R, — 4RH,,RP[,> e

when the auxiliary field is gauge fixed as:
O(X)=¢(X)@D|j__yy 1 =-22"Iy@D
Residual symmetry: SO(1,3) x U(1)

The constraints that correspond to the above breaking are:
Chamseddine 02

R = $R% =0 leading to a, =0, b,* =

ol
=
=

N
N
=

N



The commutative limit

The 2-form field, By, and a, decouple
The commutators of functions vanish: [f(z),g(x)] — 0

The anticommutators of functions reduce to product:
{f(@),9(x)} — 2f(x)g(x)

The inner derivation becomes: [X,, f] — 0. f

2
Trace reduces to integration: %Tr — f d*z

We also regard the following reparametrizations:
i

a ; a D a ; a
e/ — ime,", P, — _EPG’ R, — imT,,

{ i
ab ab : ab ab
w, " = —5wWu Map — 2iMeay, R, — _iR””

When the commutative limit of the action is considered, it
reduces to the Palatini action, which is equivalent to EG, with a
cosmological constant term present.

The tensor components transformations are given in:
Manousselis, Manolakos, Z, 18 (See App. I).



Unification of gravity theories with Internal Interactions

® So far in the gauge theoretic approach of gravity, general
relativity is described by gauging the symmetry of the tangent
manifold in four dimensions.

® Usually the dimension of the tangent space is considered to be
equal to the dimension of the curved manifold. However, the
tangent group of a manifold of dimension d is not necessarily
S50,.
Weinberg ’84
® [t has been suggested that by gauging an enlarged symmetry of
the tangent space in four dimensions one could unify gravity with
internal interactions.
Chamseddine, Mukhanov 10

® We aim to unify gravities as a gauge theory with internal
interactions under one unification gauge group.

® Further attempts of unification for the case of Einstein gravity:
Percacci, '91; Manolakos et al, ’23; Konitopoulos, Roumelioti, Z, ’23.



Unification of Conformal and Fuzzy Gravities with

Internal Interactions
Unification Group

® Weyl gravity is based on gauging the SO(2,4), while Fuzzy
gravity on SO(2,4) x U(1).
¢ Internal Interactions by SO(10) (GUT).

® Spontaneous symmetry breakings are used in all cases.

Roumelioti, Stefas, Z, 24
Roumelioti, Stefas, Z, 24

Usually to have a Chiral theory we need a SO(4n + 2) group. The
smallest unification group in which both Majorana and Weyl
condition can be imposed is SO(2,16) from which:

50(2,16) 228, 50(2,4) x SO(12)
and

50(12) 255, s0(10) x [U(1)].



Breakings and branching rules

We start from SO(2,16) ~ SO(18)
® For CG we gauge SO(2,4) ~ SU(2,2) ~ SO(6) ~ SU(4)
® For FG we gauge SO(2,4) x U(1) ~ SO(6) x U(1) ~ U(4)

¢ For internal interactions we require SO(10) GUT.

OSO(2,16)(SO(274)) = SO(IO) and
CSO(2,16)(SO(254) X U(l)) = SO(lO) X U(l)



Breakings and branching rules (Continued)

SO(18) > SU(4) x SO(12)

18 = (6,1) + (1,12) vector
153 = (15,1) + (6,12) + (1,66) adjoint
256 — (4,32) + (4, 32) spinor
170 = (1,1) + (6,12) + (20', 1) + (1, 77) 2nd rank symmetric

VEV in the (1,1) component of a scalar in 170 leads to
SU(4) x SO(12).



Breakings and branching rules (Continued)

We break the SO(12) down to SO(10) x U(1) or to SO(10) with the
66 rep or the 77 rep.

SO(12) 5 SO(10) x U(1)
66 = (1)(0) + (10)(2) + (10)(—2) + (45)(0)
77 = (1)(4) + (1)(0) + (1

2
)+ (1)(=4) + (10)(2) + (10)(=2) + (54)(0)
(

by giving VEV to the ((1)(0)) of the 66 rep we obtain SO(10) x U(1).
by giving VEV to the ((1)(4)) of the 77 rep we obtain SO(10).



Breakings and branching rules (Continued)

We break SU(4) in 2 steps:
e First step: Breaking SU(4) — Spa:

SU(4) D Sp4
4=1
6=1+5

giving VEV to a scalar in 6 rep in the (1) component, the SU(4)
breaks down to the Spy.

® Second step: Breaking Spy, — SU(2) x SU(2)
Sps D SU(2) x SU(2)
5=(L1)+(2,2)
4=(2,1)+(1,2).

giving VEV in (1, 1) of a scalar in the 5 rep we obtain eventually
the Lorentz group SU(2) x SU(2) ~ SO(1,3).



Fermions
Weyl condition: TP+l = +¢p4, D = even.

Note that since TP+ = 45 @ 44+1 | the eigenvalues of 4° and y3+!
are interrelated. However the choice of the eigenvalue of I'P*+1 does
not impose the eigenvalue on ~°!

Majorana condition: ¢ = Cy)T

Weyl-Majorana spinors can exist when D =4n + 2 .
Type of spinors of SO(p, ¢) depends on signature (p — g)mods.
For p 4+ q = even :

® (: real rep

® 4: quaternionic rep

® 2 or 6: complex rep

Chapline & Slansky, 1982; Polchinski, 1998; D’Auria et al., 2001;
Figueroa-O’Farrill, n.d.



Fermions (Continued)

In the case of SO(2,16) the signature is 6, and imposing the Weyl
and Majorana conditions is permitted. Dirac spinors are defined as

direct sum of Weyl spinors and the Weyl condition chooses one of
them, say 015 = 256.
Spinor rep branching rules are:
SO(18) D SU(4) x SO(12)
256 = (4,32) + (4, 32)
Imposing Majorana condition the fermions are in the (4,32). Then
SO(12) D SO(10) x [U(1)]
32 = (16)(1) + (16)(—1)
On the other hand
SU(4) — Spy — SU(2) x SU(2)
4=4=(2,1)+(1,2).



Fermions (Continued)

After all the breakings:

SU(2) x SU(2) x SO(10) x [U(1)]

{[2.1) + (1,2)H{(16)(-1) + (16)(1)}
=161(—1) +16.(1) + 16r(—1) + 16r(1)

and since 165 (1) = 16,(—1) and 164(1) = 16r(—1),

=2 X 16L(—1) + 2 X 16R(—1)

Finally, keeping only the left-handed part we obtain:
2 x 16.(—1)
Imposing also the Majorana condition in lower dims we obtain

160(~1) of SO(10) x [U(1)]



Fermions in Fuzzy Gravity and Unification with
Internal Interactions

® Fermions should be chiral in the original theory to have a chance
to survive in low energies
® they should appear in a matrix representation since FG is a
matrix model
Fortunately the way out was suggested in unification schemes with
extra fuzzy dimensions Chatzistavrakidis, Steinacker, Z 10
Instead of using fermions in fundamental, spinor or adjoint reps of an
SU(N), we can use bi-fundamental reps of cross product SU(N)
groups.
Interesting example N = 1, SU(N)* models:
SU(N)y x SU(N)q x ... x SU(N)*
with matter content

(N,N,1,..,1) + (1, N,N,..,1) + ...+ (N,1,1,.... N)

Ma, Mondragon, Z, 04
with successful phenomenology, N = 1, SU(3)3.



Fermions in Fuzzy Gravity and Unification with
Internal Interactions (Continued)

® In FG choosing to start with the SO(6) x SO(12) as the initial
gauge theory with fermions in the (4, 32) we satisfy the criteria to
obtain chiral fermions in tensorial representation.

® Weyl and Majorana conditions do not concern the global or local
nature of the gauge part of the theory. Therefore all the
discussion of unifying conformal conformal gravity with internal
interactions can be repeated.

® The gauge U(1) of FG due to the anticommutation relations, is
identified with the one appearing in the SO(12) D SO(10) x U(1).

Further studies:
® on various breakings and their scales Patellis, Trakas, Z, 24

® including possible gravitational signals from cosmic strings due to
the SO(10) breakings Patellis, Roumelioti, Stefas, Z, '25



Thank you for your attentz'on.’.
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Appendix I: Fields and transformations

The gauge connection, A, as an element of the SO(2,4) algebra,
can be expanded in terms of the generators as

1
A, = 5wuabMab + e, Py + b, Ko +a,D,

It obeys the following infinitesimal transformation rule,
0A, = D,e = 0ue+[A,, €,

where € = €(x) a gauge algebra parameter which be expanded too
as

)

e=¢P, + %)\abMab + kD + p*K,.
From the above, the transf rule of the fields can be found:
Jeu® = 0 + wu%E” — 0" — Ape,” + ke,
6wuab _ au)\ab _ 2w#ac>\bc _ 4fu[a§b] _ 4eu[apb]7
0ty = Ok — 26 fra + 20" €pa,
6b," = 0up® 4w, oy + bup® — X fup — K f°



Appendizx I: Fields and transformations (2)
The transformations of the fields:

50,8 = —i[ Xy A — [, A%] + e A= 20E0 00 - S D)
1 - réc
- 5{5‘1 24 ileS, exfeabed + = [607 e uped + *P\ s @m)€abed — €%, b, eabea
_ 1
Bt = —ilXom, €4 = ilam, €]+ ileo, €8] — {68 B} + {60, b2} + 3 (%0}

1= reC Sy C
- Z{Ebwﬂb} +4[€%, w2 eapea — iAY, b5 eabea

1
8,5y = =il Xom, €] = ilam, €] + ileo, byi] = {&,wni"} = 2{0, e} + 5 A%, b}
+{£a’&m}+ip‘bczem}eabcd +7'[£ 7“}77(; ]Eabcd
Sam = =ilXom, co] = ilam, co] +i[€", byl + iléo, dm] + 5 [Aas wiit’] + 5 [€as eyt
8am = —i[Xm, ] — ilam, &) + ileo, am] + {€a, €,2} — {€a, 0,0} + = [A“d w2 €abed

(Transformations of the component of B,,, are calculated as well)



Appendixz II: SSB of Weyl Gravity to EG

® The result of the breaking can be seen by considering the
decomp. of 15 of SU(4) under SU(2) x SU(2) x U(1)

SU(4) =222, SU(2) x SU(2) x U(1)
15 = [(3’ 1)0 + (17 3)0] + (1’ 1)0 + (2’ 2)2 + (27 2)2 ,

— [(8,1)p + (1, 3)0] describes the generators of the Lorentz gauge
group, Mab

— (1,1)p the generator of dilatations, D

— (2,2)2 the generators of the translations, P,

— (2,2)9 the generators of conformal transformations, K,

® The generators P, and K, are broken due to the SSB of the
scalar 15-plet



Appendiz II: SSB of Weyl Gravity to EG (2)

¢ Similarly, the decomposition of the 15 generators of SU(4) under
the SO(5) to which it breaks after the SSB of the scalar 6-plet is,

SU(4) =225 50(5)
15=10+5,

— 10 the generators of the unbroken gauge group, SO(5), and
— 5 the broken generators

¢ To identify the unbroken and the broken generators above we
consider the decomp of reps 10 and 5 of SO(5) under the
SU(2) x SU(2) describing the Lorentz gauge group,

SO(5) D SU(2) x SU(2)
10=(3,1)+(1,3) + (1,1) + (2,2),
5=(1,1)+(2,2).

— Ten unbroken gen. from the SSB of the scalar 6-plet
correspond to My, and the P, (which were broken by the <15>)
— Five broken gen. are the (1,1) of D and the (2,2) of K,.



Appendiz II: SSB of Weyl Gravity to EG (3)

® In summary, <15> breaks the generators of P, and K,, leaving
unbroken the Lorentz rotation generators, M,; and the dilaton
generator, D, while <6> breaks the dilaton generator, D and
gives an additional contribution to the breaking of the generators
K, (and to the masses of the corresponding gauge bosons).



Appendiz III: Equivalence of Gauge and Diffeo transf

® We calculate the difference between a diffeomorphism and a
gauge transformation of the fields:

def — el = (v Oyet + 9y (vel) — v”0,el)
— (auga + wuabfb — b8 — )\abez + I'ieZ)
® Setting £* = vte,”, PR U“wuab, Kk = vHb,, and p* = vH f, %
Seua —de,* =v” (&,eua —0ue,” — wuabeyb + w,,abeub + by, — b,,e,ﬂ)
=— v”]:?l“,“.

— the constraint needed for getting rid of the translational part,
with a coordinate transformation making up for them, is the
vanishing of the torsion,

Ry =0.



Appendiz III: Equiv. of Gauge and Diffeo transf (2)

® Similarly, the difference between a diffeomorphism and the gauge
transformation 6b,* — b, leads to

R,.=0,
while the corresponding difference Sw,ﬁb — 6w,ﬂb results to
R, =0.

® As already mentioned the generators P, and K, are broken due
to the SSB of the scalar 15-plet, i.e. the two torsionless
conditions are resulting from the SSB of the scalar 15-plet.

® The two torsionless conditions and the vanishing of the curvature
tensor (which is satisfied on-shell) guarantee the equivalence of
the diffeomorphisms and gauge transformations.
— The gauge theory based on the SO(2,4) group describes the
4-d conformal gravity.



