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The Planck length is the following combination of fundamental
constants, having the dimension of length:
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Numerical value of the Planck length is £p; ~ 1.61 - 1033cm.

The physical meaning of the Planck length is as follows. This is a
scale on which it is fundamentally impossible to consider the theory
of gravity without taking into account the quantum effects !, since
it is on the Planck scale that the values with the dimension of
length inherent for gravity theory (the Schwarzschild radius of a
spherically symmetric black hole) coincide with those for quantum
theory (the Compton wavelength).

ID. Oriti, ed. Approaches to quantum gravity. Toward a new understanding
of space, time and matter. Cambridge University Press; 2009:



Really, the Compton wavelength is given by the expression
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and the Schwarzschild radius is
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It is easy to see that the equality takes place:
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The appearance of a black hole on Planck scales does not allow us
to obtain information about the structure of space on scales smaller
than the Planck length.



In 1987 I. V. Volovich ? conjectured that this kind of effect is
associated with a fundamental change in the geometry of space on
the Planck scale.

Namely, the existence of unmeasurable regions of space is the result
of a violation of Archimedes’ axiom (the axiom of measurability) in
Euclidean geometry. A conjecture about the non-Archimedean
nature of space on Planck scales was formulated.

2]. V. Volovich, Number Theory as the Ultimate Physical Theory, preprint
CERN-TH. 4781/87, CERN, Geneva, 1987 , 11 pp., reproduced in "p-Adic
Numbers Ultrametric Anal. Appl. 2 (1), 77-87 (2010).



However, the question of the mechanism of changing the metric
from Archimedean to non-Archimedean remains open.

In this paper, an attempt is made to construct a model of metric
change using the apparatus of metric geometry. Namely, a geodesic
in the Gromov-Hausdorff space connecting ultrametric and
ordinary metric spaces will be explicitly constructed.

As a model example of an ultrametric space, we will consider the
set Zp, of p-adic integers with a metric generated by the standard
p-adic norm; as a model example of an ordinary metric space, we
will choose the unit segment [0, 1] C R with a standard metric
generated by the absolute value.



A metric space is a pair X = (X, dx), where X is a set, dx is a
metric on X, that is, a mapping dx: X x X — [0, 00) satisfying
the conditions:

> dx(x,x') =0 < x=x/;

> dx(x,x") = dx(x,x);

> dx(x,x") < dx(x,x") + dx(x', x").
If dx satisfies the condition
dx(x,x") < max{dx(x,x"),dx(x’,x")} then this is ultrametric,
the space (X, dx) is ultrametric (or non-Archimedean).
Important examples for the future are the following.

» I =[0,1], di(x,x") = |x — x’| — Archimedean space;

» Zp,dz,(x,x") = |x = x|, = non-Archimedean space;

> Ap={x1,.. . Xm},da,(xi,xj) =1,i #j,i,j=1,2,...,m~-

simplex.



We define two operations on metric spaces: direct product and
dilation.

Direct product (X x Y, dxxy) of the metric spaces X and Y is the
Cartesian product of X x Y with the metric given by the expression

dxxy ((X,y), (x’,y’)) = max {dx(x,x’), dy(y,y/)} .

Let A € Ry be a positive real number. The space AX obtained
from the space (X, dx) by dilation the metric has the form:

AX = (X, Ady).

Let (X, d) be a metric space and H = H(X) be a set of compact
subsets of X. We define the metric (Hausdorff metric) dy on H.
Let A, B € H(X),

du(A,B) =inf{e >0: B C U(A) and A C Uc(B)},

where U (A) = {x € X : d(x,A) <€}



(H(X), dy) is a metric space, and it is true that H(X) is compact
if and only if X is compact.

By means of GH, we denote the set of isometry classes of
compact metric spaces. We introduce the metric on the set GH
as follows 3.

The realization of the pair X, Y of compact metric spaces is
called the triple (Z, X', Y’), where Z is a metric space,

X czZ,Y' cZ X,Y are isometric to X', Y’, respectively, and
dz|x» = dx,dz|y: = dy.

den(X,Y) = inf du(X',Y').
realizations of XY

(GH, dgn) is a complete separable metric space.

3M. Gromov. Metric structures for Riemannian and non-Riemannian spaces.
Birkhduser Boston, MA, 2007.
D. Burago, Yu. Burago, S. Ivanov. A course in metric geometry.  AMS, 2001.



The following Theorems are valid.

Theorem 1

1
dr(L, Zp) = 5.

Theorem 2

Let X be a connected compact metric space, diamX = 1. Then we

have:
1

dGH(X, Zp) = E

Theorem 3

Let k be a positive integer such that the inequalities
pk < q < pk*1 are satisfied. Then equality is valid:

1

-

2dH(Zp, Zq) =1 — s



A subset of R(X,Y) C X x Y of the direct product of the sets X
and Y is called a correspondence if the projections of this subset

onto the components of the product are surjective:
erR(Xa Y) = Xa erR(Xa Y) =Y.
The distortion distR(X, Y) of a corresponence R(X,Y) is the

following number:

distR(X, Y) = sup |dx (x,x") = dy (y,y")|
(x,¥),(x",y")ER(X,Y)

The following statement # is true:

1
den(X,Y) == inf distR(X, Y).
2 correspondences R(X,Y)
This statement provides a convenient way to calculate distances in
the Gromov-Hausdorff space.

“D. Burago, Yu. Burago, S. Ivanov. A course in metric geometry. AMS,
2001.



Here are some simple examples.

Example 1
Let R(X,Y) =X x Y, then

distR(X, Y) = max{diamX, diamY'}.
Therefore,

2dgH(X,Y) < max{diamX, diamY'}.

Example 2
2dgH(X, A1) = diamX. Using the triangle inequality
deH(X, A1) < deu(X,Y) + den(Y,; A1),

we get:
2deH(X, Y) > |diamX — diamY/|.



Example 3
Let f: X — Y be surjective. Then the graph {(x, f(x)),x € X} is
a correspondence.

There are two important points:

» there is (not unique) optimal correspondence
Ropt (X, Y): 2dgy = distRope (X, Y);

> to calculate distances in the Gromov-Hausdorff space, it is
enough to consider only closed correspondences.



Proof of Theorem 1.
Let R(Zp,I) be an arbitrary closed correspondence.

Let’s consider Z, as a disjoint union of p balls of radius 1/p,

Lp = I_I,-:prBi/p. The family of subsets T of the form
{erR(Bi/p,]I), i=1,...,p} forms a covering of the segment I by
closed subsets.

Since T is connected, at least two sets of our coverage have a
common point. The projections on Z, of the preimages of this
common point lie in different balls B; and B;.

Therefore, the distance in Z, between the projections of the
preimages is equal to one. Thus, distR(Zp,I) > 1. Since this is
true for any correspondence, choosing the optimal one yields
2dcH(Zp, 1) > 1.

On the other hand, 2dgn(Zp, 1) < max{diam Z,, diaml} = 1.

Since we used only the connectivity of the space I, the same proof
works in the case of Theorem 2.
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Proof of Theorem 3.
First, let's prove the estimate from below: 1 — % < 2deH(Zp, Zq).

Let N be a positive integer. Let's consider Z, as a disjoint union of
p"N balls of radius e = p~N. We will choose one point in each ball
of the constructed partition. The set X,(Vp) obtained in this way,
consisting of p/V points, is provided with the metric dy, induced by
the metric on Z,. As a result, we get the metric space (X(p), dy).

It is useful to note that the space Xl(p) is nothing but a simplex Ap.

Note that the Hausdorff distance between Z, and X,(Vp) is equal to
€. This immediately implies the validity of the evaluation of
deH(Zp, X,(Vp)) < € (it suffices to consider the realization of the pair

(vax/ilp)) Of the form Z = Zp — Y/’X/ — XI(VP))



The following simple Lemma follows from the triangle inequality.

Lemma 1
For any metric compact X, the inequality holds:

dor(X, Zp) — den(X, X\P| < p~V.

Let I\/IST(X,(VP)) be the minimum spanning tree of a finite metric

space X,(Vp).

By means of O‘(X,(VP)), we denote the mst-spectrum of the space

X,g,p), that is, the sequence of edge lengths of the minimum
spanning tree in decreasing order.



The following Lemma is valid.

Lemma 2
1 11 1 1 1
(X)) =L, L S e s
~——p p p p p p
p—1 ——
p(p—1) p?(p—1) pN—1(p—1)

Let's decompose Z, into a disjoint union of p balls of radius 1/p:

Z, = uf’B{/p. In each of the partition balls, we will choose one

element from the set X,(Vp). The pairwise distances between the
various elements of this set are equal to one, that is, it is a simplex
Ap. 1t follows directly from this that MST(X,(VP)) has exactly p — 1
edge of length 1.

Now each of the balls B{/p, i=1,2,...,p of our partition let's

decompose into disjoint union of p balls of radius 1/p? (in total, we



get p? balls of radius 1/p?) and let’s do a similar reasoning for each
of these balls. Continuing these arguments N times, we obtain the
statement of the Lemma.

From the triangle inequality for the spaces Z;, Z,, A« we obtain:
d6H(Zp Zq) > doH(A ks Zg) — deH(Dpr, Zp).

Next, we will use the results of paper® (Theorem 3.3). The above
theorem states, in particular, the following:

2dGH(Am,X) = max{al(X) — 1,Um(X), 1-— O’m_l(X)},

where X is a finite ultrametric space consisting of n points, and
l<m<n

5A. O. Ivanov, A. A. Tuzhilin. The Gromov-Hausdorff Distances between
Simplexes and Ultrametric Spaces. arXiv:1907.03828v1, 2019.



Let’s choose a positive integer N, g < p". Then the equality
2deh (D, XY = 1
is valid, because

1 (X)) = op1(XN) = o (X)) = 1.

In addition, the following equality is true
2dr (L, X)) = 1/,
because in this case

(X)) = op1 (X)) = 1, o (XP) = 1/pF.

Taking into account the last equalities for sufficiently large N, we
obtain the required estimate from below.



To obtain an estimate from above, we construct the
correspondence R(Zp, Zq) explicitly and calculate its distortion.

Let's represent the number g as the sum of positive integers of the
following form:

g=q+ G+ +qu 1<q <p, i:1,2,...,pk.

Note that in this representation, at least one of the terms is not
equal to 1 (since p* < q).

Let's decompose Z, into a disjoint union of p¥ balls of radius p~*:

P pi
Zp = u’:]-Bp,k

Let's represent Z, as a disjoint union of balls of radius g~ in
accordance with the above decomposition of the number g:

i i q,k ik
1 n q2 R P P
Zg=U BE, U B2, U B



Since any compact totally disconnected spaces are homeomorphic,
there exists a homeomorphism ¢: Zq — Z, such that for all
j=1,2,...p¥ the conditions

Qb (l—lzjlegfl) = Blj;fk

are fulfilled.

As the desired correspondence, R(Zq, Zp) let's take the graph of
the map ¢.
We'll show that the distortion of this correspondence is 1 — ﬁ.

Let x,x' € Zg: |x — X/|q < %, then the inequality

|p(x) — d(xX)|p < p—lk is fulfilled by the definition of the map ¢.
Indeed, the inequality [x — x'|4 < % means that x and x’ lie inside a
ball of radius 1/g, and the image of each such ball lies inside a ball
of radius 1/pk in Zp. Therefore, for all such x and x/, the

inequality ||x — x| — |#(x) — ¢(x')|p| < p~* holds.



Now let x and x’ lie in different balls of radius 1/q in Z4 (in this
case, |x — x| = 1). There are two possible cases here. The first is
when x and x’ lie in different groups of balls, and the second is
when they lie in the same group of balls.

In the first case, we have |¢(x) — ¢(x)|, > p~¥*1, since ¢(x) and
#(x') lie in different balls of radius p=* in Z,. Therefore, the
inequality

“X —x|qg = |¢(x) = Hp‘ <1-—p

holds.

In the second case, |¢(x) — ¢(x)|, < p~K, since ¢(x) and ¢(x') lie
in the same ball of radius p=* in Z,,.



Now we will impose an additional condition on the map ¢.

As noted earlier, in our partition of a set consisting of g balls of
radius 1/q in Zg into pX groups of balls, there are groups (at least
one) consisting of gy balls such that the inequalities 2 < g, < p are
satisfied.

The image of each such group under the map ¢, is a ball of radius
p~%in Z, (each group has its own).

Let's decompose this ball into a disjoint union of p balls of radius

p~*~1, and divide this set into g, groups (recall that g, < p).

We will construct the map ¢ in such a way that each of the g,
balls is mapped into its own group.

In this case, if x and x’ lie in different balls from the group of g
balls, then their images lie in different balls of radius p~ %1 inside a
ball of radius p=* and, thus, |¢(x) — ¢(x")|, = p~~.



Thus, we have obtained the following properties of the map ¢:

1 1
Ix = Xla = 10(x) = 6(x)lp| < . i Ix = xlq < =,

and in the case of [x — x| = 1:

/ ’ 1
[Ix =Xl = 160) = ¢ )p| <1 -

or .
[Ix = Xlq = [60) = #(x)]p| =1 = .

It follows directly from the last formulas that the graph of the
constructed map ¢ has a distortion equal to 1 — ﬁ. Therefore, the
inequality is valid 2dgy (Zp,Zq) <1 — p—lk. The theorem has been
proved.
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Note that the correspondence constructed during the proof of
theorem 3 (the graph of the map ¢: Zy — Zp) is optimal.

It is not difficult to construct an optimal correspondence R(Zp, 1)
between Z, and the unit interval I.

As such a correspondence, consider the graph of the Monna map.

Let Zp > x = xg +x1p+ ... xep¥ +.... The Monna map
w: Zp, — Lis given by the expression

1 _ _
u(x):;(xo+x1p Lk,

Let's calculate the distortion of the Monna map's graph.

Let x,x’ € Zp: |[x — X'|, = p~". This means that
X0 = Xpy X1 = X{, ..y Xn—1 = X,_1,Xn # X,,. Then the inequality is
valid

() — (<) < p7".



Therefore, for all x,x’: |x — x'| < 1, the estimate

|Ix = X'[p = [u(x) = u(x)]] < 1/p

is valid.
Now let [x — x|, = 1, that is, xo # xj. Let xo > x{ be for
certainty, then (x — x")o = xp — x§ and the inequalities are valid

/ /
X0 — X Xo—Xp+ 1
=0 < u(x) — p(x)| € =——.
p p
It immediately follows that the distortion of the Monna map's
graphis 1 — %. Taking into account theorem 1, it can be concluded
that the Monna map's graph defines the optimal correspondence

between Z, and I.



Our task is to construct a geodesic connecting Z, and I in the
Gromov-Hausdorff space. To do this, we will use the following
result from the paper ©:

Proposition 1

Let (X, dx),(Y,dy) be compact metric spaces, then for any
optimal correspondence Ropt(X,Y') there is a family of compact
metric spaces Ry such that Ry = X, Ry = Y and for t € (0,1)
R: = (Ropt(X,Y), d:), where

dr ((x, ), (x',y") = (1 = t)dx(x,x) + tdy(y,y")

defines the shortest curve in GH connecting the spaces X and Y.

5A. O. lvanov, S. lliadis, A. A. Tuzhilin. Realization of Gromov-Hausdorff
Distance. arXiv:1603.08850v1, 2016.



Thus, the following statement is true.

Theorem 4
The family of spaces (Zp,do = |- |p), (M, de), (I, dh = |-
I, C Zp xI denotes the graph of the Monna map,

), where

de ((x, p(x)), (v, 1(¥))) = (1= ) Ix=y lp+ t|u(x)—pu(y)l, t € (0, 1),

defines the shortest curve connecting Z, and 1 in the
Gromov-Hausdorff space.

A geodesic connecting Z, and Zg is constructed in a similar way.
To do this, instead of the graph of the Monna map, we need to
take the graph of the map ¢ from the proof of theorem 3.



(X, d) is a metric space. Let M, be the space of positive symmetric
r x r matrices and let K.(X) C M, be the subset realizable by the
distances among r-tuples of points of X:

(mj) € Ki(X) <= 3x1,...,x 1 d(xi,x;) =my, i,j=1,...,r.

Proposition 2
Two compact metric spaces X and Y are isometric if and only if
Ki(X)=K(Y)Vr=12....

Question 1
What is the K-curvature class of (I, d¢)?

Question 2
What is the degree of ultrametricity " of (T, d¢)?

"R. Rammal, J. C. Angles d’'Auriac, B. Doucot. On the degree of
ultrametricity. J. Physique Lett. 46 (1985).
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