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Scattering of UHECR at small pitch angle by plasma wave turbulence

It is very easy to be modern.
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Relevant observations
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1) Individual particle energies up to 10%° eV for hadrons and 10'4 eV for elec-
trons (positrons and negatrons) with power law energy distributions N(E)
E~3 over wide energy ranges. At relativistic energies 100 times more hadrons

then electrons.
2) CRs are highly isotropic, although sources are located in galactic plane —
efficient scattering mechanism required!
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Common feature: compact objects with high-velocity (often relativistic)
outflows interacting with the ambient medium.
These observations tell us WHERE cosmic rays are accelerated but not neces-

sarily HOW they are accelerated!
Crucial question: How is directed kinetic outflow energy converted into rela-

tivistic charged particles (=relativistic plasma beam physics)?

1) Energy density of cosmic ray hadrons
oo
w =4m Z/ dEkinEkinNz'(Ekin) =0.5eV cm™3
— Jo
2

and pressure P = w/3 ~ 3-107!3 dyne cm~—2 comparable to energy densities of
interstellar gas, galactic magnetic field and the universal microwave background

radiation (" global energy equipartition™).

2) Steady luminosity of galactic CRs with volume of galaxy V ~ 10%7 cm3:

L=wV/<T>~10%ergs™?

Restricts possible CR source energetics.

3) Degree of linear polarization of synchrotron radiation from galactic CR elec-
trons: galactic magnetic field contains large fraction of turbulent component
B = By + 6B with 6B ~ By.

4) Most likely scattering mechanism is pitch-angle scattering by turbulent mag-
netic field fluctuations. What else? Coulomb scattering much too slow because
of low ISM gas density < n >.
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5) Rigidity ordering: evidence for electromagnetic CR acceleration and trans-
port processes in turbulent electromagnetic fields E=0+0E (no ordered elec-
tric field because of huge ISM conductivity, few exceptions: pulsars, magnetic
reconnection)), B = By + 0B.

Faraday's induction law relates rot 6E = —c~1(86B/0t).
Lorentz force:

—

ap _
dt

5B X (By + 6B)

q
c

Acceleration requires turbulent electric fields:

dEyin c?  dp? c?

= = 5. 0F
dt 2B, dt | By P

with Eiin = 1/p2c? + m2ct — mc?.
Equal acceleration rates for charged particles at the same magnetic rigidity
R=p/q

dp2 - dR? L
—:2 _'-(SE —:2 '5E
ae 9P - g 2R

Any electromagnetic acceleration process explains 100 times more
hadrons than electrons at relativistic energies Fy;, > mp(:2 =1 GeV
because m, = 1836m,



6) To a large extent, our progress in understanding CR dynamics
in cosmic plasmas depends on our understanding of the magnetic
and electric field fluctuations

Here we address two important issues:

e Nature of cosmic electromagnetic fluctuations in magnetized (e.g. ISM)
and nonmagnetized (intergalactic medium (IGM)) cosmic plasmas

e Which equations describe the dynamics of cosmic rays for given and spec-
ified electromagnetic fields (test-particle approach)? And what are the
CR transport parameters (diffusion coefficients, convection speeds, accel-
eration rates) ?
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Figure 7: Sketch of cosmic ray life. Courtesy R. Wagner.

Fig. 7 sketches the typical life of a cosmic ray particle: after being accelerated
in individual sources such like supernova remnants, active galactic nuclei or
gamma-ray bursts, it stochastically propagates in the partially turbulent mag-
netic field and interacts with the ambient photon and matter fields, generating
nonthermal photon and neutrino radiation. In the case of galactic CRs this takes
about 107 years before detection by near-Earth or ground based detectors.

The electromagnetic fields fulfill Maxwell equations

v B@n - 0 Bz 4”an/dpvfa<m 5o, (2
V- B(Z,t) = (3)

V x (xt)+i88tB( ) = 0. (4)

V-E@0) = 4r Y a [ b 1350, (5)

where the charged particle's phase space distributions f,(Z, P, t) determine the
current and charge densities on the right-hand side of Egs. (2) and (5).

Each phase space distribution f,(Z,p,t) of ionized interstellar gas and CR par-
ticles fulfills the collisionless Boltzmann equation

Ofa _ . 0fa . §xB 8fa
o T 0 &E+qa[E+ . E —Qa(wp,) (6)

where the source term Q. (Z,p,t) accounts for sources and sinks of particles
and other (than the Lorentz force) electromagnetic interactions such as radiative
reaction and/or the mirror force in nonuniform guide magnetic fields Bo. Via
the Lorentz force the electromagnetic fields determine the behaviour of the
particle distribution functions f,.




Method

Because of the complicated nonlinear equations of motion of charged particles
in partially random electromagnetic fields there are only two methods to study
theoretically particle acceleration and transport:

(i) numerical simulations of highly idealized configurations,

(ii) quasilinear perturbation theory valid for small turbulence levels g7, = |6B| <
Bo.

Both have their advantages and shortcomings, and they complement each other.

Fokker-Planck equation -- assumptions on the fluctuating electromagnetic field turbulence

e (1) Gaussian statistics,
e (2) adiabatic approximation,
e (3) homogeneous and quasi-stationary turbulence,

e (4) existence of a small enough finite decorrelation time of second-order
correlation functions,

e (5) random phase (between particles and fluctuations),



In a moving medium of arbitrary speed U || By || € the Fokker-Planck equation
reads with ' = [1 — (U/c)?]~1/2:

][ o)

ot v ot
Ofo 10U, ( 8fo 2 9fo
+I' U +vp ][— vazr (upap +(1- ﬂ)—a,u)]
% 2 0 9fo
_ —p2_ = 2 0,
+Nfo+Rfo—S(X,p,p,t) =p 2.7 Doy oe, (7)

The phase space coordinates have to be taken in the mixed comoving coordinate
system (time and space coordinates & in the laboratory (=observer) system
and particle’s momentum coordinates p and p = p|/p in the rest frame of
the streaming plasma). In Eq. (7) we use the Einstein sum convention for
indices, and z,, € [, p, X, Y] represent the four phase space variables with non-
vanishing stochastic fields SE and 6B. Consequently, the term on the right-
hand side represents 16 different Fokker-Planck coefficients: but, depending
on the turbulent fields considered not all of them are non-zero and some are
much larger than others. S()?,p, i, t) represents additional sources and sinks
of particles.

In a medium at rest the Fokker-Planck transport equation (7) reduces to

B B o d
f°+ f0+Nf0+Rf0—S(X Pt =p 2—p2DM—fO,
0z, 0z,

ot Moz (10)

Magnetized space plasmas contain low-frequency linear (6B < By) transverse
MHD waves (such as shear Alfven and magnetosonic plasma waves) with dis-
persion relations w% = ijﬁ and w% = V2k?, respectively. The induction law
then indicates for MHD waves E = (V4/c)éB < 0B

As we demonstrate next, a perturbation scheme based on By > 6B > 0F
corresponds to the reduction

<f> (X pa“:d)a )_>f0(X‘ p7“7t)_)F(X D, ) (11)

to gyrotropic fo(X,p, u,t) and to isotropic, gyrotropic distributions functions
(X p,t), respectively, in excellent agreement with the observed isotropy of
CRs.

Before proceeding, we estimate the relative strength of the different Fokker-
Planck coefficients. With € = V4 /v < 1 these scale as

§ B2
Duu (2 D¢¢) ~ Dy = alQpB_g = alﬁpqL < alﬂp,
Dpp =~ D()C p DXY RLD(),
Dﬂp(l‘ D¢p) ~ D()ep, D”X =~ D¢X = RLDO (12)

Consequently, the associated times scales for pitch-angle scattering (7, ~
D;.;), momentum diffusion (T, ~ p®/Dy,) and perpendicular spatial gyro-
center diffusion (T'x ~ X?/Dxx) scale as

2
R2
Therefore, in the presence of low-frequency MHD fluctuations the particles will
relax most quickly on the time scale min[Q;l,TO] to an isotropic, gyrotropic

distribution function, which then on considerably longer time scales T'x and T},
undergoes diffusion in position space and momentum space, respectively.

T
T:T¢=TO:D51,T:6—§>>T0, Tx ~=To>Tp, (13)

Moreover, spatial convection and momentum convection is possible stemming
from the mixed Fokker-Planck coefficients such as D, x and D,,.



Diffusion approximation

Our earlier qualitative estimate of Fokker-Planck coefficients for energetic par-
ticles with v > V), indicated that the pitch angle Fokker-Planck coefficient
D, is the largest one. We therefore make the basic assumption of diffusion
theory that the gyrotropic particle distribution function fo()z,p, i, t) under the
action of low-frequency magnetohydrodynamic waves adjusts very quickly to a
distribution function through pitch-angle diffusion which is close to the isotropic
distribution in the rest frame of the moving background plasma. Defining the
isotropic part of the phase space density F()?, z,p,t) as the u-averaged phase
space density

S 1 [t 5
F(X,p,t) = 5/1d,u* fO(X,p,,LL,t), (14)

we follow the analysis of Jokipii (1966) and Hasselmann and Wibberenz (1968)
to split the total density fj into the isotropic part F' and an anisotropic part g,

fo(X,p,u,t) = F(X,p,t) + g(X,p, 1,1 (15)

where because of Eq. (14)

1
/ dpg(X,p,p,t) =0 (16)

-1

Singleing out the phase space variable u by introducing the reduced set of
variables z, , € [X,Y, p] the Larmor-phase averaged Fokker-Planck coefficients
transport equation (7) reads

r [1 + UU#] lafo — 18UI‘2 (up% +(1-— u2)%)]

c? ot v ot Op ou
Ofo 10U, ( 0fo  _ 290
+F[U+w](az -y (upap+(1 “)au
+NfO+RfO_S(Xap7Mat) =
5 0 Ofg 0 Ofo O Ofo , o 0 Ao
2 Y 2 A 0, ¥ ~ZJ0 2_ 7 2 ZJY
# azap YO0z, Ou M ou + 8,uD“Gazo +p 6zap Doy o’ (17)

Instead of manipulating this complicated equation, we follow the historical de-
velopment and consider simplified versions of the full transport equation.



Full transport equation

We now give up on the magnetostatic approximation and include finite electric v [} (1- “2)Dup
field effects. The diffusion approximation of the Fokker-Planck equation (10) Kzp = 4 /_ld“’ Dy ’ (44)
leads to
1 DD
Vx oxF Fpp = 5 / 1dl‘ lep - —IZ; pu]
aF %% 3yF - Ky
‘/p p_28pp2F 4 82 | H Dl‘/‘ 3 | H D#“
Ox Kxx KXy Kxz Kxp OxF
_ Oy | kyx Kyy Kyz Kyp Oy F (40) The convection speeds are given by
0, Kzx Kzy Kzz Kzp 0.F 19U
p~20,p? Kpx Kpy Kpz Kpp P20 F Vx = HIZ/—X + 2 2 U 5, 12X (46)
We identify some of the individual 20 pitch-angle averaged diffusion coefficients 2 7
and convection speeds as K +1_0U
W = —fy + L " U§/€ZY (47)
. VA| v2/1dﬂ(1_u)20</1du 1 ] (41) 2 L
727 = % = 4§ — -
3 8 J_4 D D,.~ kzz Y+1_0U
1t Dx,D
nxXZi/ du[Dxx—%] V_la_U Kzp v+1 6—Un (49)
e P30 Ls yv2 9 Zp
szgn qa)VRL / du p(l— 2)DXN /1 p (1—p®)D,x
12L, = a Dy
2R2 /1‘( _ 2)(1_ 3) . . . . . .
[/ dys In its general form the diffusion—convection transport equation (40) contains
7212 Dy 1 aeep . . e -
spatial diffusion and spatial convection terms as well as momentum diffusion
_/ i “(1 - / dn “(1— (1— )], (42) and momentum convection terms. Since the pioneering work of Fermi (1949,

1954) it has become customary to refer to the latter two as Fermi acceleration
of second and first order, respectively.

1 & Dy,D sign(ga)vRy ', (1—p)®D
_t Dv. — ZYuup a / pp
HYP 2 \/_1 d/”’ |: YP Dp,p, :| + 12L1 d/" D,m 9

(43)



Pitch angle Fokker-Planck coefficient

With its 20 different diffusion coefficients and 4 convection speeds the gen-
eral diffusion-convection transport eequation (40) is rather complicated and
involved. One has to emphasize that, depending on the type of turbulent elec-
tromagnetic fields considered, not all of these 24 CR transport parameters have
nonzero values, and some of the transport parameters have much higher values
than others, so that simplified versions of the general transport equation (40)
are justified.

Most crucial is the knowledge of the pitch-angle Fokker-Planck coefficient
D,,,,(p)! Smallest values for kzz, largest values for &,

In the ISM the presence of isotropically distributed fast magnetosonic waves is
essential, as these fluctuations allow transit-time damping interactions with the
CRs, which provide the dominating contribution to scattering.

, Q\/l — ; . C _ .
gy = fL = [ V1— p2E) + —= [ *(6B, + z,u;5Er) — e (6B, — z,uv5El)” gyrofrequency ) = ZeBy/(mcy)

< (Ap)? >
t—o0 2




Step 1. quasilinear approximation - integration over unperturbed orbits

The quasilinear approximation is achieved by replacing in the Fourier transform of the

fluctuating electric and magnetic field

+oo g +oo ) 5
IE(x(t),t) = / d*ROE (K, ) KX / PROE(k, t)e KX (71)

—0o0

500 ; +oo 1 <o
SBGx(0),t) = [ kB, )ekXO » [ kB ek X0 (72)

the true particle orbit x(¢) by the unperturbed orbit x°(¢), resulting in

o(t) = ¢o — O (73)
+00
OBy, ~ Z d3kJBlm||(k, t)Jn(W)ein(¢—¢())+i(k"v”+nQ)t+ik~Xo’ (74)
respectively, where xo = (2, Yo, 20) denotes the initial (¢ = 0) position of the cosmic ray ky = k2,
particle and W = IQI +ki/1—=p? = Ry, - ki /1 — p? involving the cosmic ray Larmor ki = ng +kj,
radius Ry, = v/|f2|. For the wave vector k we have used cylindrical coordinates: Y= arccot(k—x).
y

01 —p?
Ccll_/t‘ ~ h,(t) = e Z /d3kem(¢ b0)+i(ky vy +nQ)t+iK- XO(’U 1 — p2J,(W)SE(k,t)
0

n=—oo

i T 1(W)e~®[6B,(k, t) — iMS(SEl(k7 t)])

g (W) (6B, (k, t) + in OB, (1)) - 7
(76)

(75)



Step 2. Quasi-stationary turbulence As second assumption (after the quasilinear approximation) we use the quasi-
itationary turbulence condition that the correlation function < hy,(t;)h}(7+t;) > depends

mly on the absolute value of the time difference [ty — ¢1| = |7| so that
< h(t)hi (7 + 1) >=< h, ()0 +7) > (81)

t 0 t t1
< (Ap)? >=2 /0 dty [ dr < b (O 0+7) >=2 /0 dt /0 ds < h,(0)h%(s) > (82)

Thirdly, we assume that there exists a finite correlation time ¢. such that the correlation
function < h,(0)h}(s) >— 0 falls to a negligible magnitude for s — oo. This allows us

to replace the upper integration boundary in the second integral by infinity so that

< (Ap)? >~ 2 /0 dty /O T ds < hy(0)h%(s) >= 2t /0 Tds < h,(O)hi(s) >  (83)

As can be seen, the two assumptions of quasi-stationary turbulence and the existence
of a finite correlation time t. guarantee diffusive behaviour of quasilinear transport in
agreement with the conclusion of Shalchi & Schlickeiser (2004). For the quasilinear Fokker-
Planck coefficients (70) we then obtain

D,, = /O " ds < h,(0)h%(s) > (84)



Step 3. homogenous turbulence

+0oo . ’
(271r)3/ dxoe KK %0 _ (1 — 1) (88)

implying that turbulence fields at different wavevectors are uncorrelated. The respec-

tive ensemble average of (87) then involve the correlelation tensors

< 8B4 (k, 0)dB5(K, s) >= 6(k — k') Pas(k, 5) (89)
< 6B, (k,0)0E}(K, 5) >= 6(k — k') Rap(k, s) (90)
< 0B (k, 06 E5(K, 5) >= 6(k — K)Tos(k, ) (91)
< 8E,(k,0)0B5(K, s) >= 6(k — K')Qaps(k, 5). (92)

Step 4. stochastic phase approximation —  that the initial phase ¢, of the cosmic particle is a random variable that can take on any

value between 0 and 27, the averaging over ¢ results in



Step 5. plasma wave turbulence —time integration

We follow the approach for the electromagnetic turbulence that represents the Fourier
transforms of the magnetic and electric field fluctuations as superposition of N individual

weakly damped plasma modes of frequencies

w = wj(k) = wr;(k) —iv;(k), (94)

j =1,...N, which can have both the real and imaginary parts with |y;| << |wg,|, so that
N . . .
Bk, 1), Bk, 1)] = 3 [B/(k), B (k)| 7" (95)

J=1

Damping of the waves is counted with the a positive v/ > 0. We need to add Maxwell’s

induction law

B/(k) = u%jk x E (k). (96)

As a consequence of (95), the magnetic correlation tensor (89) becomes

Paﬁ(k, 8) = Z Pgt,@(k)e_le’j( )s—; ( )s, (97)
j=1

where

Plg(k) =< Bl (k)B}* (k1) > 6(k — k). (98)

Corresponding relations hold for the other three correlation tensors.

75 (k)

(100)

R](’y]) = /O dS e_i(k”’v||+(.<)R,j+nQ)3—»yjs _

75 (k) + [kjvy + wr; (k) +nQ)]?

In the case of negligible damping v — 0, use of the -function representation

711120 e mo(¢)

(101)

reduces the resonance function (100) to sharp d-functions

R/(y=0) = 7T5(k2||’l)|| + wg,; +nQ)).



Step 6. turbulence geometry

It remains to specify the geometry of the plasma wave turbulence through the corre-

lation tensors which, according to Mattheaus & Smith (1981), have the form

g9l (k) koks ks
ﬁ(k) 62 2 —|—w(k)eaﬂ)\z ,

where o(k) is the magnetic helicity and the function g(k) determines different turbu-

S

(104)

lence geometries. This will be discussed in Sec. 5.2.

2

N oo ’yj(k)
Dy = Z 2 / + kv +wr, (k) +nQ)]?

j=1n=-—c0

2

~(%(1—u2)J3(W)Rﬁ(k g S (W

g /n+1 ) [Phr(k, 3))+H

R W)(PL(k,8) + 125 Ry (k) + i (T, 5) — @O, )]

—%Jn—l(W)JnH(W)[@M(PJJ%L(ka s) — RRL(k s) + W (TRL(k s) + Qr(k, )

2
—924 1 C ;
e (Pla(l,s) - 1 SR

+zc\/\1f;—

Fna (W) (e Qiy (1, 5) — €T3 b, ) + i (R (, $)e™ + B (i, s)e™))]]  (103)

r(k;s)) - w;(TiR(k, s) + QLr(k, 5)))]

J, (W) [Jn+1(W)(e“"T1jﬂ (k, s)—e‘i‘lejR(k, s)—l—iug(Rﬁl(k, s)ew—{—RfR(k, s)e™ ™)

Rfm(k 8)+w (Qkr(k, )~ Thr(k, 5))]

Step 7: isotropic turbulence

Throughout this work we consider isotropic linearly polarised magnetohydrodynamic tur-
bulence so that the components of the magnetic turbulence tensor for plasma mode j

is

o g (k) kak
Pla(R) = & 13 (Gas = —137)- (145)

The magetic energy density in wave component j then is

(6B)2 = [ &’k Z Pk

We also adopt a Kolmogorov-like power law dependence (index q > 1) of g/(k) above the

/ dkg (k) (146)

minimum wavenumber K,;n

g (k) = gik™9 for k > kpin. (147)

The normalisation (147) then implies

9 = (4= 1)(6B)krin- (148)
Moreover we adopt a vanishing cross helicity of each plasma mode, i.e. equal intensity of

forward and backward moving waves, so that gg refers to the total energy density of each

mode.



Step 8: Dispersion relation

(1) incompressional shear Alfven waves with dispersion relation
wp = Viki (129)

at parallel wavenumbers |k| < Q,,0/Va, which have no magnetic field component along

the ordered background magnetic field 6B, (|| Bo) = 0,

(2) the fast magnetosonic waves with dispersion relation
wp =Vik®, K=k + k] (130)

for wavenumbers |k| < €,0/Va, which have a compressive magnetic field component

6B, # 0 for oblique propagation angles 6 = arccos™'(k;/k) # 0.

Schlickeiser and Miller (1998) investigated the quasilinear interactions of charged par-
ticles with these two plasma waves. In case of negligible wave damping the interactions
are of resonant nature: a cosmic ray particle of given velocity v, pitch angle cosine y and

gyrofrequency Q. = .o/~ interacts with waves whose wavenumber and real frequencies

obey the condition

wr(k) = vk + nf, (131)

for entire n = 0,£1,+2,... .




TTD vs Gyro resonant interaction

For shear Alfven waves only interactions with n # 0 are possible. These are referred to as

gyroresonances because inserting the dispersion relation (129) in the resonance condition

(131) yields for the resonance parallel wavenumber
(132)

which apart from very small values of |u| < V4 /v typically equals the inverse of the cosmic

ray particle’s gyroradius, kj 4 ~ n/R. and higher harmonics.

In contrast, for fast magnetosonic waves the n = 0 resonance is possible for oblique

propagation due its compressive magnetic field component. The n = 0 interactions are

referred to as transit-time damping, hereafter TTD. Inserting the dispersion relation (130)

into the resonance condition (131) in the case n = 0 yields
v = £V / cosb (133)

as necessary condition which is independent from the wavenumber value k. Apparently all
super-Alfvenic (v > V4) cosmic ray particles are subject to TTD provided their parallel
velocity v equals at least the wave speeds +V4. Hence, equation (133) is equivalent to
the two conditions

|,u| > VA/’U, v Z VA. (134)

Additionally, fast mode waves also allow gyroresonances (n # 0) at wavenumbers

nfl,

hp= e
= 3, —vpcosf’

(135)

Implications

(1) With TTD-interactions alone, it would not be possible to scatter particles with |u| <
Va/v, i.e., particles with pitch angles near 90°. Obviously, these particles have basically no
parallel velocity and cannot catch up with fast mode waves that propagate with the small
but finite speeds +V4. In particular this implies that with TTD alone it is not possible to
establish an isotropic cosmic ray distribution function. We always need gyroresonances

to provide the crucial finite scattering at small values of pu.

(2) Conditions (133) and (134) reveal that TTD is no gyroradius effect. It involves fast
mode waves at all wavenumbers provided the cosmic ray particles are super-Alfvenic and
have large enough values of u as required by (134). Because gyroresonances occur at single
resonant wavenumbers only, see (132) and (135), their contribution to the value of the
Fokker—Planck coefficients in the interval |u| > V4 /v is much smaller than the contribution
from TTD. Therefore for comparable intensities of fast mode and shear Alfven waves,
TTD will provide the overwhelming contribution to all Fokker-Planck coefficients D,,,,,
D,, and D, in the interval |u| > V4 /v. At small values of || < V4 /v only gyroresonances
contribute to the values of the Fokker—Planck coefficients involving according to (132) and

(135) wavenumbers at kj 4 = kg ~ £n€./V4.

VAl ,\”N?’_“ 6d#(1—u2)2 3ue 3Va
> =g

3 ep | Duu(p) — 4D, (0) — 4D,,(0)

kzz =



Hillas Limit

)\”(RL > L”) = 0OQ. (12)

Thus, ultrahigh energetic particles with a Larmor radius
larger than the scale Lj cannot be confined to the
Galaxy. This limit

PHC
la| Bo

1s known as the Hillas limit (Hillas 1984). For relativistic
particles (&2 = cp) we have for the characteristic energy
until which particles can be confined to the Galaxy

Rp = =L (13)

Ey = |q| BoLy. (14)

For protons and by assuming By, = 0.6nT for the
galactic magnetic field we have |¢| By = 0.18eV/m
= 5.4 - 10'eV/pc. By using that the largest scale of
turbulence is 10 — 100pc (see Beck 2007), Eq. (14)
becomes

Eyg =5.4-10%V —5.4-10eV. (15)

Dispersion relation for fast magnetosonic waves read as:

Wr ~ ikVy (5)

describing forward (¢ = 1) and backward (¢ = —1) moving fast mode
waves. Resonant wavenumber in the gyroresonance case for an isotropic
turbulence reads as:

nf n

b = v(un —i€)  Ry(un — ie) ©)

where Ry, = v/Q is gyroradius. Resonant wavenumber in the slab turbu-
lence is

n
k2 7
=g ")
and it is often approximated as
n
k() ~ — 8
) = 1 ®

which actually is undefined at u = 0 (see Eq. (7)).
At p = 0 resonant wavenumber for isotropic turbulence (6) will be as

follows:
n

gt — ) =
K =0)= 7, ©
that has no singularity at u = 0, it is independent of the magnetic field
strength (kJ(1 = 0) = w,;/yc = 1.88 x 107%,/n./7) and it is by factor of
e ! = ¢/Vy larger than the Hillas limit [2].



Damping influence

The inclusion of resonance broadening due to wave damping in the reso-
nance function (11) guarantees that this dominance also holds for cosmic ray
particles at small pitch angle cosines y < |V, /v|, unlike the case of negligible
wave damping discussed by Schlickeiser and Miller [28]. Therefore, in the

The damping of fast mode waves is caused both by collisionless Landau
damping and collisional viscous damping, Joule damping and ion-neutral fric-
tion. According to Spanier and Schlickeiser [30] the dominating contribution
is provided by viscous damping. Following the analysis and steps performed
by Vukcevic [31] resonance function reads as:

2.9 -10°8V2sin? 0

12
(2.9 - 1058V 2k sin? 0)2 + [vpcos @ + V42’ (12)

RfF(U) =

where T denotes assumption n=0 in Eq. (11), while for g = 0 resonance
function is

T _ a(l—n?)
R0 = Gt e g 1)

with @ = 2.9-10°8V2, 8 = ¢2/V2 and cosf = 1.
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Figure 1: The resonance function given by equation (13) for typical values in the ISM.

The resonance function given by equation (13) is presented in Fig. 1 for
typical ISM values for # and V4. Comparing our result with the result ob-
tained using second order QLT [32] it can be seen that width of the resonance
function for damped plasma wave turbulence is independent of turbulence
strength dB/B,. Also, in the case of plasma wave turbulence, which is
more realistic than magnetostatic one, it is not correct to simply separate
velocity and magnetic field contribution since they are not independent. In
the plasma wave turbulence the problem is solved self-consistently and time
integration is not independent of turbulence geometry; once isotropic tensor
(10) is involved it is necessary to consider relevant plasma modes together
with the dispersion relation (5).



Mean free path
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where s = kR;. Note that relevant is only the case u < € and since
1 — 0 integration with respect to n goes from 0 up to 1. Also, in the case of
UHECR energy limit will be different from the case of positrons treated in

[31] due to different mass of protons end positrons.

3k v 1 € 3 Va 3V4
A°F=—=——/ dp =~ = KminRp)' ™
v 4D,u=0)J), " TaDr(u=0)" 4 (q—l)( (L)) (5B
15

where it is reasonable to take the boundaries in p integration from 0 to €
instead of 0 to 1 since p << €, and

00 1
1
D = / dss_q/ dn (1 —n*)J2(s4/1 —n?) oo (16)
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Now, we consider two limits: k,.;,R;, << 1, and k,,;, R >> 1, where
kminRr = E and is normalized with respect to E., where

k.
k min

Ac? = 2 x 10° An)/2 Lmas PeV, (17)

E.=
¢ 10pc

where A is CR mass, k. = Qo,/Va = wpi/c, Qo, is gyrofrequency, w;
is plasma frequency and k., = 27/ L. Evaluation of D in these two
limits can be found in Vukcevic [31], Appendix A, in details. Note that k.
is different for UHECR from CR treated in the cited paper due to different
particle mass.
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kminRr >> 1:
In this limit we derive

21014

D(E>>1) =< p —E@+Y), (18)
so that mean free path reads as:
15 q ,Boy.,
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At relativistic rigidities we find that \° ~ E3.

kninRp << 1:
In this case we derive

1 1
D(E 1)=-——FE"v1 20
(B<<l) =3 (20)
and consequently
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In this energy limit the mean free path is constant with respect to E.
The mean free path is normalized by factor A; = 3—3(%)2 which for typical
interstellar plasma (V4 = 30km/s, By/6B ~ 10 and q = 5/3) is 2 X 10*cm.
In Fig. 2 is presented mean free path for damped and undamped case.
It is very important to notice that energy limit is not changed compared to
undamped case but the value of the mean free path is two orders of magnitude
smaller then in the undamped case, which makes damping plasma turbulence

very efficient mechanism in confinement of the UHECR. As we have already
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Figure 2: The mean free path for protons versus the particle energy for undamped isotropic
wave turbulence (dashed line) and damped case (solid line). Energy at which the mean free
path change dependance on energy is F. ~ 10%eV. For slab turbulence at Eg ~ 10%eV
the mean free path becomes infinitely large; in the isotropic turbulence that value is
enhanced by factor v/V4 due to resonant interaction - gyroresonace for undamped case
and TTD resonant interaction in damped case. The second one provides even smaller
mean free path due to the broadened resonance function. Mean free path is normalized
by A; in pc.

For isotropically distributed interstellar magnetohydrodynamic waves we
demonstrated:

e gyroresonance at resonant wave number k., = (Rpe)~! for p = 0 is
dominant in the case of undamped plasma waves;

e TTD resonant interaction is dominant for 4 = 0 in the damped case
due to resonance function broadening;

e particle energy limit that can be scattered and therefore confined is
enhanced by four orders of magnitude E, ~ 10°An!'/2(L/10pc)PeV
comparing to Hillas energy;

e mean free path is two orders of magnitude smaller comparing to un-
damped case.

Below limiting energy the cosmic ray mean free path and the anisotropy
exhibit the well known E'/? energy dependence, for ¢ = 5/3 denoting the
spectral index of the Kolmogorov spectrum for undamped plasma turbulence,
while in the damped turbulence both transport parameters remain constant.
At energies higher than E, mean free path and anisotropy steepen to a E3-
dependence. This implies that cosmic rays even close to ultrahigh energies
of several tens of FeV can be rapidly pitch-angle scattered by interstellar
plasma turbulence, and are thus confined to the Galaxy.
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