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Motivation

Large cosmological observational findings:
High orbital speeds of galaxies in clusters. (F.Zwicky, 1933)
High orbital speeds of stars in spiral galaxies. (Vera Rubin,
at the end of 1960es)
Accelerated expansion of the Universe. (1998)
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Problem solving approaches

There are two problem solving approaches:
Dark matter and energy
Modification of Einstein theory of gravity

Rµν − 1
2Rgµν = 8πGTµν − Λgµν , c = 1

where Tµν is stress-energy tensor, gµν are the elements of the
metric tensor, Rµν is Ricci tensor and R is scalar curvature of
metric.
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Dark matter and energy

If Einstein theory of gravity can be applied to the whole
Universe then the Universe contains about 4.9% of
ordinary matter, 26.8% of dark matter and 68.3% of dark
energy.
It means that 95.1% of total matter, or energy, represents
dark side of the Universe, which nature is unknown.
Dark matter is responsible for orbital speeds in galaxies,
and dark energy is responsible for accelerated expansion
of the Universe.
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Modification of Einstein theory of gravity

Motivation for modification of Einstein theory of gravity
The validity of General Relativity on cosmological scale is
not confirmed.
Dark matter and dark energy are not yet detected in the
laboratory experiments.
Another cosmological problem is related to the Big Bang
singularity. Namely, under rather general conditions,
general relativity yields cosmological solutions with zero
size of the universe at its beginning, what means an infinite
matter density.
Note that when physical theory contains singularity, it is not
valid in the vicinity of singularity and must be appropriately
modified.
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Approaches to modification of Einstein theory of
gravity

There are different approaches to modification of Einstein
theory of gravity.

Einstein General Theory of Relativity

From action S =

∫
(

R
16πG

− Lm − 2Λ)
√
−gd4x using

variational methods we get field equations

Rµν − 1
2Rgµν = 8πGTµν − Λgµν , c = 1

where Tµν is stress-energy tensor, gµν are the elements of the
metric tensor, Rµν is Ricci tensor and R is scalar curvature of
metric.
Some of the approaches to modify gravity are:

f(R) Modified Gravity
Nonlocal Gravity
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Nonlocal Modification of GR

Nonlocal gravity is a modification of Einstein general relativity in
such way that Einstein-Hilbert action contains a function f(2,
R). Our action is given by

S =
1

16πG

∫
M

(
R − 2Λ + P(R)F(2)Q(R)

)√
−g d4x ,

where 2 = 1√
−g∂µ

√
−ggµν∂ν , F(2) =

+∞∑
n=1

fn2n +
+∞∑
n=1

f−n 2−n.

We use Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)
( dr2

1−kr2 + r2dθ2 + r2 sin2 θdφ2), k ∈ {−1,0,1}.
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Nonlocal Modification of GR: equations of motion

Equations of motion:

Gµν + Λgµν −
1
2

gµνP F(2)Q + RµνW − KµνW +
1
2

Ωµν = 0,

where

W = P ′(R) F(2) Q(R) + Q′(R) F(2)P(R), Kµν = ∇µ∇ν − gµν2,

Ωµν =
+∞∑
n=1

fn
n−1∑
`=0

Sµν(2`H,2n−1−`G)

−
+∞∑
n=1

f−n

n−1∑
`=0

Sµν(2−(`+1)H,2−(n−`)G),

Sµν(A,B) = gµν
(
∇αA ∇αB + A2B

)
− 2∇µA ∇νB.

and P ′ (Q′) means derivative of P (Q) with respect to scalar
curvature R.
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The case Q(R) = P(R) and the corresponding EoM

Gµν + Λgµν −
gµν
2

P(R)F(2)P(R) + RµνW − KµνW +
1
2

Ωµν = 0,

W = 2P ′(R) F(2) P(R), Kµν = ∇µ∇ν − gµν2,

Ωµν =
+∞∑
n=1

fn
n−1∑
`=0

Sµν(2`P,2n−1−`P)−
+∞∑
n=1

f−n

n−1∑
`=0

Sµν(2−(`+1)P,2−(n−`)P).

Let

2P(R) = qP(R),

then

2−1P(R) = q−1P(R), F(2)P(R) = F(q)P(R), q 6= 0,
W = 2F(q)P ′P, Ωµν = F ′(q)Sµν(P,P),

Sµν(P,P) = gµν
(
∇αP ∇αP + P2P

)
− 2∇µP ∇νP.
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2P(R) = qP(R), equations of motion

Gµν+Λgµν−
gµν
2
F(q)P2+2F(q)RµνPP ′−2F(q)KµνPP ′+

F ′(q)

2
Sµν(P,P) = 0.

The last equation transforms to

(Gµν + Λgµν)
(
1 + 2F(q)PP ′

)
+ F(q)gµν

(
−1

2
P2 + PP ′(R − 2Λ)

)
− 2F(q)KµνPP ′ +

1
2
F ′(q)Sµν(P,P) = 0.
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Model P =
√

R − 2Λ: equations of motion
Let now P =

√
R − 2Λ, then PP ′ = 1

2 and

2
√

R − 2Λ = q
√

R − 2Λ = ζΛ
√

R − 2Λ, ζΛ 6= 0,

where q = ζΛ and q−1 = ζ−1Λ−1.
Since P =

√
R − 2Λ, EoM simplify to

(Gµν + Λgµν) (1 + F(q)) +
1
2
F ′(q)Sµν(

√
R − 2Λ,

√
R − 2Λ) = 0.

It is evident that EoM are satisfied if

F(q) = −1 and F ′(q) = 0.
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Model P =
√

R − 2Λ: two explicit forms for F(2)

It is easy to prove that F(2) presented in the following simple
symmetric form:

F(2) =
+∞∑
n=1

f̃n
[(2

q

)n
+
( q
2

)n]
= − 1

2e

(2
q

e
2
q +

q
2

e
q
2

)
, q 6= 0,

satisfies conditions

F(q) = −1 and F ′(q) = 0,

and has
√

R − 2Λ as its eigenfunction with eigenvalue −1, that is

− 1
2e

(2
q

e
2
q +

q
2

e
q
2

)√
R − 2Λ = −

√
R − 2Λ

whenever 2
√

R − 2Λ = q
√

R − 2Λ.

In the sequel we will see that eigenvalue q is proportional to Λ, i.e.
q = ζΛ, where ζ 6= 0 is a definite dimensionless constant.
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Model P =
√

R − 2Λ: two explicit forms for F(2)

Since q = ζΛ we have 2
√

R − 2Λ = ζΛ
√

R − 2Λ.
Now, nonlocal operator F(2) can be rewritten as

F(2) =
+∞∑
n=1

f̃n
[( 2

ζΛ

)n
+
(ζΛ

2

)n]
= − 1

2e

( 2

ζΛ
e

2
ζΛ +

ζΛ

2
e

ζΛ
2

)
, ζΛ 6= 0.

This representation of F(2) by exponential function is not unique and
can be written in the following more general form

F(2) = −1
2

e(∓1)
( 2

ζΛ
e
(
± 2

ζΛ

)
+
ζΛ

2
e
(
± ζΛ

2

))
.
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Nonlocal square root gravity model

Nonlocal square root gravity model

S =
1

16πG

∫
M

√
R − 2Λ F (2)

√
R − 2Λ

√
−g d4x ,

where

F (2) = 1 + F(2) = 1 + F+(2) + F−(2),

F+(2) =
+∞∑
n=1

fn 2n, F−(2) =
+∞∑
n=1

f−n 2−n.

Construction

R − 2Λ =
√

R − 2Λ
√

R − 2Λ→
√

R − 2Λ F (2)
√

R − 2Λ

= R − 2Λ +
√

R − 2ΛF(2)
√

R − 2Λ
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Cosmological solutions

Our primary interest is to find cosmological scale factor a(t)
that satisfies equation

2
√

R − 2Λ = q
√

R − 2Λ.

Since we use FLRW metric we have

2 = − ∂2

∂t2 − 3H(t)
∂

∂t
,

H(t) =
ȧ
a
, R(t) = 6

(
ä
a

+
( ȧ

a
)2

+
k
a2

)
.

If a(t) is a solution of equation 2
√

R − 2Λ = q
√

R − 2Λ, then it
is also solution of equations of motion with the corresponding
two conditions on nonlocal operator: F(q) = −1 and F ′(q) = 0.
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Cosmological solutions

Nonlocal gravity model

S =
1

16πG

∫
M

(R − 2Λ +
√

R − 2ΛF(2)
√

R − 2Λ)
√
−g d4x ,

has the following types of exact cosmological solutions:
1) Cosmological solutions in the flat universe (k = 0):

Solutions of the form a(t) = A tn eγt2
, (k = 0)

a1(t) = A t
2
3 e

Λ
14 t2

, F(−3
7

Λ) = −1, F ′(−3
7

Λ) = 0,

a2(t) = A e
Λ
6 t2
, F(−Λ) = −1, F ′(−Λ) = 0.

Solutions of the form a(t) = (α eλt + β e−λt )γ , (k = 0)

a3(t) = A cosh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a4(t) = A sinh
2
3
(√3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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Cosmological solutions

Solutions of the form a(t) = (α sinλt + β cosλt)γ , (k = 0)

a5(t) = A
(

1 + sin
(√
−3

2
Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a6(t) = A
(

1− sin
(√
−3

2
Λ t
)) 1

3
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a7(t) = A sin
2
3
(√
−3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0,

a8(t) = A cos
2
3
(√
−3

8
Λ t
)
, F

(3
8

Λ
)

= −1, F ′
(3

8
Λ
)

= 0.
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Cosmological solutions

2) Cosmological solutions in the closed and open universe
(k = ±1):

Cosmological solution of the form a9(t) = A e±
√

Λ
6 t ,

(k = ±1)
Solutions of the form a(t) = (α eλt + β e−λt )γ , (k = ±1)

a10(t) = A cosh
1
2
(√2

3
Λ t
)
, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0,

a11(t) = A sinh
1
2
(√2

3
Λ t
)
, F

(1
3

Λ
)

= −1, F ′
(1

3
Λ
)

= 0.
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

Dimitrijevic et al. 2019

S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(2)

√
R − 2Λ

)√
−g d4x ,

where F(2) =
+∞∑
n=1

fn2n +
+∞∑
n=1

f−n 2−n.

Cosmological solution: a1(t) = A t
2
3 e

Λ
14 t2

, k = 0, Λ 6= 0
R = 4

3 t−2 + 22
7 Λ + 12

49Λ2t2

2
√

R − 2Λ = −3
7Λ
√

R − 2Λ

F(−3
7Λ) = −1, F ′(−3

7Λ) = 0

mimics dark matter t
2
3 and dark energy e

Λ
14 t2

H(t) = ȧ
a = 2

3 t−1 + 1
7Λt – Hubble parameter
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

The EOM can be rewritten in the form

Gµν + Λgµν = 8πGT̄µν .

Effective Friedmann equations are:

ä
a

= −4πG
3

(ρ̄+ 3p̄) +
Λ

3
,

ȧ2 + k
a2 =

8πG
3

ρ̄+
Λ

3
,

where ρ̄ and p̄ are counterparts of the energy density and
pressure in the standard model of cosmology, respectively.
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

From the effective Friedmann equations we have

ρ̄(t) =
3

8πG

( ȧ2 + k
a2 − Λ

3

)
, p̄(t) =

1
8πG

(
Λ− 2

ä
a
− ȧ2 + k

a2

)
.

Then the equation of state is

p̄(t) = w̄(t) ρ̄(t),

where w̄(t) is the corresponding effective state parameter.
Corresponding effective density and pressure for solutin
a1(t) = A t

2
3 e

Λ
14 t2

are:

ρ̄ =
2t−2+ 9

98 Λ2t2− 9
14 Λ

12πG ,

p̄ = − Λ
56πG

(3
7Λt2 − 1

)
.

We have w̄ = p̄
ρ̄ → −1 when t →∞.
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Planck data

The Planck 2018 data for the ΛCDM universe are:
H0 = (67.40± 0.50) km/s/Mpc – Hubble parameter;
Ωm = 0.315± 0.007 – matter density parameter;
ΩΛ = 0.685 – Λ density parameter;
t0 = (13.801± 0.024) · 109 yr – age of the universe;
w0 = −1.03± 0.03 – ratio of pressure to energy density.
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

Recall that H0 = 2
3 t−1

0 + 1
7Λ1t0.

Taking the above Planck results for t0 and H0 one obtains
Λ1 = 1.05 · 10−35 s−2 (in c = 1 units), that differs from Λ in
ΛCDM model, where Λ = 3H2

0 ΩΛ = 0.98 · 10−35s−2.
One can also calculate time (tm) for which the Hubble
parameter has minimum value Hm, i.e. tm = 21.1 · 109 yr
and Hm = 61.72 km/s/Mpc.
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

Similarly, from

ä(t)
a(t)

= −2
9

t−2 +
Λ

3
+

Λ2t2

49
,

we get that accelerated expansion of the Universe started at
ta = 7.84 · 109years or in other words 5.96 · 109years ago.
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

We calculated the critical energy density ρc and the energy
density of the dark matter ρ̄:

ρc =
3

8πG
H2

0 = 8.51 · 10−30 g
cm3

ρ̄ =
3

8πG

(
H2

0 −
Λ1

3

)
=

3
8πG

(4
9

t−2
0 − Λ1

7
+

Λ2
1

49
t2
0

)
= 2.26 · 10−30 g

cm3 .

Note that energy density ρ in Einstein theory of gravity with
Λ-term is

ρ =
3

8πG

(
H2

0 −
Λ

3

)
= 2.68 · 10−30 g

cm3 .
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

Then we have

ρ− ρ =
Λ1 − Λ

8πG
= ρΛ1 − ρΛ = 0.42 · 10−30 g

cm3 ,

where

ρΛ1 =
Λ1

8πG
= 6.25 · 10−30 g

cm3 , ρΛ =
Λ

8πG
= 5.83 · 10−30 g

cm3

are vacuum energy density of background solution
a1(t) = A t

2
3 e

Λ
14 t2

and ΛCDM model, respectively.
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Cosmological solutions: Case a1(t) = A t
2
3 e

Λ
14 t2

We get

ΩΛ1 =
ρΛ1

ρc
= 0.734, ΩΛ =

ρΛ

ρc
= 0.685, 4ΩΛ = ΩΛ1 − ΩΛ = 0.049,

Ωm =
ρ

ρc
= 0.315, Ωm1 =

ρ

ρc
= 0.266, 4Ωm = Ωm − Ωm1 = 0.049.

We obtain that Ωm1 = 26.6% corresponds to dark matter and
4Ωm = 4ΩΛ = 4.9% is related to visible matter, what is in a
very good agreement with the standard model of cosmology.
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Concluding Remarks

We point out nonlocal square root gravity model

S =
1

16πG

∫
M

(
R − 2Λ +

√
R − 2ΛF(2)

√
R − 2Λ

)√
−g d4x

where F(2) = −1
2e(∓1)

(
2
ζΛ e

(
± 2

ζΛ

)
+ ζΛ

2
e
(
± ζΛ

2

))
.

We have found exact vacuum cosmological solution

a(t) = A t
2
3 e

Λ
14 t2

, Λ 6= 0, k = 0

which mimics dark matter and dark energy.
Computed cosmological parameters are in good agreement with
observations.
Eight new exact vacuum cosmological solutions were found by detail
analysis of two classes of functions: a(t) = (α eλt + β e−λt )γ and
a(t) = (α sinλt + β cosλt)γ .
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