Lebesgue-like measure and integration theory on the Levi-Civita field

Khodr Shamseddine

University of Manitoba

- 1 Introduction: the Levi-Civita Fields $\mathscr R$ and $\mathscr C$
- Outer Measure on \mathcal{R}
- \bigcirc A Lebesgue-like Measure on \mathscr{R}
- 4 Simple Functions on Measurable Sets
- Measurable Functions
- 6 A Lebesgue-like Integral

Outline for Section 2

- 1 Introduction: the Levi-Civita Fields $\mathscr R$ and $\mathscr C$
- 2 Outer Measure on R
- ${\color{red} oldsymbol{3}}$ A Lebesgue-like Measure on ${\mathscr{R}}$
- 4 Simple Functions on Measurable Sets
- Measurable Functions
- 6 A Lebesgue-like Integral

- Let $\mathscr{R} = \{f : \mathbb{Q} \to \mathbb{R} | \text{supp}(f) \text{ is left-finite} \}.$
- For $x \in \mathcal{R}$, define

$$\lambda(x) = \begin{cases} \min(\operatorname{supp}(x)) & \text{if } x \neq 0 \\ \infty & \text{if } x = 0 \end{cases}.$$

• Arithmetic on \mathcal{R} : Let $x, y \in \mathcal{R}$. For $q \in \mathbb{Q}$, let

$$(x+y)[q] = x[q] + y[q]$$

 $(x \cdot y)[q] = \sum_{q_1+q_2=q} x[q_1] \cdot y[q_2].$

Then $x + y \in \mathcal{R}$ and $x \cdot y \in \mathcal{R}$.

Result: $(\mathcal{R}, +, \cdot)$ is a field.

<u>Definition</u>: $\mathscr{C} := \mathscr{R} + i\mathscr{R}$. Then $(\mathscr{C}, +, \cdot)$ is also a field,

- Let $\mathscr{R} = \{f: \mathbb{Q} \to \mathbb{R} | \mathsf{supp}(f) \text{ is left-finite} \}.$
- For $x \in \mathcal{R}$, define

$$\lambda(x) \quad = \quad \left\{ \begin{array}{ll} \min(\operatorname{supp}(x)) & \text{ if } x \neq 0 \\ \infty & \text{ if } x = 0 \end{array} \right. .$$

• Arithmetic on \mathcal{R} : Let $x, y \in \mathcal{R}$. For $q \in \mathbb{Q}$, let

$$(x+y)[q] = x[q] + y[q]$$

 $(x \cdot y)[q] = \sum_{q_1+q_2=q} x[q_1] \cdot y[q_2].$

Then $x + y \in \mathcal{R}$ and $x \cdot y \in \mathcal{R}$.

Result: $(\mathcal{R}, +, \cdot)$ is a field.

<u>Definition</u>: $\mathscr{C} := \mathscr{R} + i\mathscr{R}$. Then $(\mathscr{C}, +, \cdot)$ is also a field.

- Let $\mathscr{R} = \{f : \mathbb{Q} \to \mathbb{R} | \text{supp}(f) \text{ is left-finite} \}.$
- For $x \in \mathcal{R}$, define

$$\lambda(x) \quad = \quad \left\{ \begin{array}{ll} \min(\operatorname{supp}(x)) & \text{ if } x \neq 0 \\ \infty & \text{ if } x = 0 \end{array} \right. .$$

• Arithmetic on \mathscr{R} : Let $x, y \in \mathscr{R}$. For $q \in \mathbb{Q}$, let

$$(x+y)[q] = x[q] + y[q]$$

 $(x \cdot y)[q] = \sum_{q_1+q_2=q} x[q_1] \cdot y[q_2].$

Then $x + y \in \mathcal{R}$ and $x \cdot y \in \mathcal{R}$.

Result: $(\mathcal{R}, +, \cdot)$ is a field.

- Let $\mathscr{R} = \{f : \mathbb{Q} \to \mathbb{R} | \mathsf{supp}(f) \text{ is left-finite} \}.$
- For $x \in \mathcal{R}$, define

$$\lambda(x) \quad = \quad \left\{ \begin{array}{ll} \min(\operatorname{supp}(x)) & \text{ if } x \neq 0 \\ \infty & \text{ if } x = 0 \end{array} \right. .$$

• Arithmetic on \mathcal{R} : Let $x, y \in \mathcal{R}$. For $q \in \mathbb{Q}$, let

$$(x+y)[q] = x[q] + y[q]$$

 $(x \cdot y)[q] = \sum_{q_1+q_2=q} x[q_1] \cdot y[q_2].$

Then $x + y \in \mathcal{R}$ and $x \cdot y \in \mathcal{R}$.

Result: $(\mathcal{R},+,\cdot)$ is a field.

- Let $\mathscr{R} = \{f : \mathbb{Q} \to \mathbb{R} | \mathsf{supp}(f) \text{ is left-finite} \}.$
- For $x \in \mathcal{R}$, define

$$\lambda(x) \quad = \quad \left\{ \begin{array}{ll} \min(\operatorname{supp}(x)) & \text{ if } x \neq 0 \\ \infty & \text{ if } x = 0 \end{array} \right. .$$

• Arithmetic on \mathscr{R} : Let $x,y\in\mathscr{R}$. For $q\in\mathbb{Q}$, let

$$(x+y)[q] = x[q] + y[q]$$

 $(x \cdot y)[q] = \sum_{q_1+q_2=q} x[q_1] \cdot y[q_2].$

Then $x + y \in \mathcal{R}$ and $x \cdot y \in \mathcal{R}$.

Result: $(\mathcal{R}, +, \cdot)$ is a field.

<u>Definition</u>: $\mathscr{C} := \mathscr{R} + i\mathscr{R}$. Then $(\mathscr{C}, +, \cdot)$ is also a field.

• Define the relation \leq on $\mathcal{R} \times \mathcal{R}$ as follows:

$$x \leq y \text{ if } x = y \text{ or } (x \neq y \text{ and } (x - y)[\lambda(x - y)] < 0).$$

- $(\mathcal{R}, +, \cdot, \leq)$ is an ordered field
- ullet $\mathscr R$ is real closed; and hence $\mathscr C$ is algebraically closed
- The map $E: \mathbb{R} \to \mathcal{R}$, given by

$$E(r)[q] = \begin{cases} r & \text{if } q = 0 \\ 0 & \text{else} \end{cases}$$

is an order preserving embedding.

• There are infinitely small and infinitely large elements in \mathcal{R} : The number d, given by

$$d[q] = \begin{cases} 1 & \text{if } q = 1 \\ 0 & \text{else} \end{cases},$$

is infinitely small; while d^{-1} is infinitely large, d^{-1} is infinitely large.

• Define the relation \leq on $\mathcal{R} \times \mathcal{R}$ as follows:

$$x \leq y \text{ if } x = y \text{ or } (x \neq y \text{ and } (x - y)[\lambda(x - y)] < 0).$$

- $(\mathcal{R}, +, \cdot, \leq)$ is an ordered field.
- ullet \mathscr{R} is real closed; and hence \mathscr{C} is algebraically closed
- The map $E: \mathbb{R} \to \mathcal{R}$, given by

$$E(r)[q] = \begin{cases} r & \text{if } q = 0 \\ 0 & \text{else} \end{cases}$$

is an order preserving embedding.

• There are infinitely small and infinitely large elements in \mathcal{R} : The number d, given by

$$d[q] = \left\{ \begin{array}{ll} 1 & \text{if } q = 1 \\ 0 & \text{else} \end{array} \right.,$$

is infinitely small; while d^{-1} is infinitely large, d^{-1} is infinitely large.

• Define the relation \leq on $\mathcal{R} \times \mathcal{R}$ as follows:

$$x \le y$$
 if $x = y$ or $(x \ne y \text{ and } (x - y)[\lambda(x - y)] < 0)$.

- $(\mathcal{R}, +, \cdot, \leq)$ is an ordered field.
- \mathcal{R} is real closed; and hence \mathscr{C} is algebraically closed.
- The map $E: \mathbb{R} \to \mathscr{R}$, given by

$$E(r)[q] = \begin{cases} r & \text{if } q = 0 \\ 0 & \text{else} \end{cases}$$

is an order preserving embedding

• There are infinitely small and infinitely large elements in \mathcal{R} : The number d, given by

$$d[q] = \begin{cases} 1 & \text{if } q = 1 \\ 0 & \text{else} \end{cases},$$

is infinitely small; while d^{-1} is infinitely large

• Define the relation \leq on $\mathcal{R} \times \mathcal{R}$ as follows:

$$x \le y$$
 if $x = y$ or $(x \ne y \text{ and } (x - y)[\lambda(x - y)] < 0)$.

- $(\mathcal{R}, +, \cdot, \leq)$ is an ordered field.
- \mathcal{R} is real closed; and hence \mathcal{C} is algebraically closed.
- The map $E: \mathbb{R} \to \mathcal{R}$, given by

$$E(r)[q] \ = \ \left\{ \begin{array}{ll} r & \mbox{if } q=0 \\ 0 & \mbox{else} \end{array} \right.,$$

is an order preserving embedding.

• There are infinitely small and infinitely large elements in \mathcal{R} : The number d, given by

$$d[q] = \left\{ \begin{array}{ll} 1 & \text{if } q = 1 \\ 0 & \text{else} \end{array} \right.,$$

is infinitely small; while d^{-1} is infinitely large, $d^{-1} = d^{-1} = d^{-1}$

• Define the relation \leq on $\mathcal{R} \times \mathcal{R}$ as follows:

$$x \le y$$
 if $x = y$ or $(x \ne y \text{ and } (x - y)[\lambda(x - y)] < 0)$.

- $(\mathcal{R}, +, \cdot, \leq)$ is an ordered field.
- \mathcal{R} is real closed; and hence \mathscr{C} is algebraically closed.
- The map $E: \mathbb{R} \to \mathscr{R}$, given by

$$E(r)[q] = \begin{cases} r & \text{if } q = 0 \\ 0 & \text{else} \end{cases}$$

is an order preserving embedding.

• There are infinitely small and infinitely large elements in \mathcal{R} : The number d, given by

$$d[q] = \left\{ \begin{array}{ll} 1 & \text{if } q = 1 \\ 0 & \text{else} \end{array} \right.,$$

is infinitely small; while d^{-1} is infinitely large.

For $x \in \mathcal{R}$, define

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases};$$

$$|x|_u = \begin{cases} e^{-\lambda(x)} & \text{if } x \ne 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

For $z = x + iy \in \mathscr{C}$, define

$$\begin{array}{lcl} |z| &=& \sqrt{x^2+y^2}; \\ |z|_u &=& \left\{ \begin{array}{ll} e^{-\lambda(z)} & \text{if } z\neq 0 \\ 0 & \text{if } z=0 \end{array} \right. \\ &=& \max\{|x|_u,|y|_u\} \text{ since } \lambda(z)=\min\{\lambda(x),\lambda(y)\}. \end{array}$$

For $x \in \mathcal{R}$, define

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases};$$

$$|x|_u = \begin{cases} e^{-\lambda(x)} & \text{if } x \ne 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

For $z=x+iy\in\mathscr{C}$, define

$$\begin{array}{lcl} |z| & = & \sqrt{x^2+y^2}; \\ \\ |z|_u & = & \left\{ \begin{array}{ll} e^{-\lambda(z)} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{array} \right. \\ \\ & = & \max\{|x|_u,|y|_u\} \text{ since } \lambda(z) = \min\{\lambda(x),\lambda(y)\}. \end{array}$$

Remarks:

- $|\cdot|$ and $|\cdot|_u$ induce the same topology τ_v on \mathscr{R} (or \mathscr{C}). Moreover, \mathscr{C} is topologically isomorphic to \mathscr{R}^2 provided with the product topology induced by $|\cdot|$ in \mathscr{R} .
- Given $x \neq 0$ in \mathscr{R} (respectively, in \mathscr{C}), we can write $\operatorname{supp}(x)$ as a strictly increasing sequence (q_n) that is either finite or otherwise diverges to ∞ . Then

$$x = \sum_{n \in \mathbb{N}} x[q_n] d^{q_n},$$

where the sum converges w.r.t. valuation topology.

Remarks:

- $|\cdot|$ and $|\cdot|_u$ induce the same topology τ_v on \mathscr{R} (or \mathscr{C}). Moreover, \mathscr{C} is topologically isomorphic to \mathscr{R}^2 provided with the product topology induced by $|\cdot|$ in \mathscr{R} .
- Given $x \neq 0$ in \mathscr{R} (respectively, in \mathscr{C}), we can write $\mathrm{supp}(x)$ as a strictly increasing sequence (q_n) that is either finite or otherwise diverges to ∞ . Then

$$x = \sum_{n \in \mathbb{N}} x[q_n] d^{q_n},$$

where the sum converges w.r.t. valuation topology.

Uniqueness of $\mathscr R$ and $\mathscr C$

- \mathcal{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R} .
 - It is small enough so that the \mathcal{R} -numbers can be implemented on a computer, thus allowing for computational applications.
- $\mathscr C$ is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of $\mathbb R$ (or $\mathbb C$).

Uniqueness of $\mathscr R$ and $\mathscr C$

- \mathscr{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R} .
 - It is small enough so that the \mathcal{R} -numbers can be implemented on a computer, thus allowing for computational applications.
- $\mathscr C$ is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of $\mathbb R$ (or $\mathbb C$).

Uniqueness of $\mathscr R$ and $\mathscr C$

- \mathcal{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R} .
 - It is small enough so that the \mathcal{R} -numbers can be implemented on a computer, thus allowing for computational applications.
- $\mathscr C$ is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of $\mathbb R$ (or $\mathbb C$).

Outline for Section 3

- 1 Introduction: the Levi-Civita Fields $\mathcal R$ and $\mathcal C$
- 2 Outer Measure on R
- A Lebesgue-like Measure on \(\mathcal{H} \)
- 4 Simple Functions on Measurable Sets
- Measurable Functions
- 6 A Lebesgue-like Integral

Outer Measure

<u>Definition</u>: Let $A \subset \mathcal{R}$ be given. Then we say that A is outer measurable if

$$\inf\left\{\sum_{n=1}^{\infty}l(I_n):I_n$$
's are intervals and $A\subseteq\bigcup_{n=1}^{\infty}I_n
ight\}$

exists in $\mathscr{R}.$ If so, we call that number the outer measure of A and denote it by $m_u(A)$

• If $A \subset \mathscr{R}$ is outer measurable then there exists a sequence of sequences of pairwise disjoint intervals $\left(\{I_n^k\}_{n=1}^\infty\right)_{k=1}^\infty$ such that $\lim_{k \to \infty} \sum_{n=1}^\infty l(I_n^k) = m_u(A)$, and for all $k \in \mathbb{N}$, we have that

$$A \subseteq \bigcup_{n=1}^{\infty} I_n^{k+1} \subseteq \bigcup_{n=1}^{\infty} I_n^k.$$

- If A, B and C are outer measurable sets in \mathscr{R} such that $A \subseteq B \cup C$ then $m_u(A) \leq m_u(B) + m_u(C)$.
- If $A, B \subset \mathcal{R}$ are outer measurable with $m_u(B) = 0$ then, for any subset $C \subseteq B$, we have that $m_u(C) = 0$ and $m_u(A \setminus C) = m_u(A)$.
- If $A, B \subset \mathcal{R}$ are outer measurable then $A \cup B$ is outer measurable

• If $A \subset \mathscr{R}$ is outer measurable then there exists a sequence of sequences of pairwise disjoint intervals $\left(\{I_n^k\}_{n=1}^\infty\right)_{k=1}^\infty$ such that $\lim_{k \to \infty} \sum_{n=1}^\infty l(I_n^k) = m_u(A)$, and for all $k \in \mathbb{N}$, we have that

$$A \subseteq \bigcup_{n=1}^{\infty} I_n^{k+1} \subseteq \bigcup_{n=1}^{\infty} I_n^k.$$

- If A, B and C are outer measurable sets in \mathscr{R} such that $A \subseteq B \cup C$ then $m_u(A) \leq m_u(B) + m_u(C)$.
- If $A, B \subset \mathcal{R}$ are outer measurable with $m_u(B) = 0$ then, for any subset $C \subseteq B$, we have that $m_u(C) = 0$ and $m_u(A \setminus C) = m_u(A)$.
- If $A, B \subset \mathcal{R}$ are outer measurable then $A \cup B$ is outer measurable

• If $A\subset \mathscr{R}$ is outer measurable then there exists a sequence of sequences of pairwise disjoint intervals $\left(\{I_n^k\}_{n=1}^\infty\right)_{k=1}^\infty$ such that $\lim_{k\to\infty}\sum_{n=1}^\infty l(I_n^k)=m_u(A)$, and for all $k\in\mathbb{N}$, we have that

$$A \subseteq \bigcup_{n=1}^{\infty} I_n^{k+1} \subseteq \bigcup_{n=1}^{\infty} I_n^k.$$

- If A, B and C are outer measurable sets in \mathscr{R} such that $A \subseteq B \cup C$ then $m_u(A) \leq m_u(B) + m_u(C)$.
- If $A, B \subset \mathcal{R}$ are outer measurable with $m_u(B) = 0$ then, for any subset $C \subseteq B$, we have that $m_u(C) = 0$ and $m_u(A \setminus C) = m_u(A)$.
- If $A, B \subset \mathcal{R}$ are outer measurable then $A \cup B$ is outer measurable

• If $A\subset \mathscr{R}$ is outer measurable then there exists a sequence of sequences of pairwise disjoint intervals $\left(\{I_n^k\}_{n=1}^\infty\right)_{k=1}^\infty$ such that $\lim_{k\to\infty}\sum_{n=1}^\infty l(I_n^k)=m_u(A)$, and for all $k\in\mathbb{N}$, we have that

$$A \subseteq \bigcup_{n=1}^{\infty} I_n^{k+1} \subseteq \bigcup_{n=1}^{\infty} I_n^k.$$

- If A, B and C are outer measurable sets in \mathscr{R} such that $A \subseteq B \cup C$ then $m_u(A) \leq m_u(B) + m_u(C)$.
- If $A, B \subset \mathcal{R}$ are outer measurable with $m_u(B) = 0$ then, for any subset $C \subseteq B$, we have that $m_u(C) = 0$ and $m_u(A \setminus C) = m_u(A)$.
- If $A, B \subset \mathcal{R}$ are outer measurable then $A \cup B$ is outer measurable.

• If $A\subset \mathscr{R}$ is outer measurable and if $\{I_n\}_{n=1}^N$ are intervals in \mathscr{R} then $A\cap \left(\bigcup\limits_{n=1}^N I_n\right)=\bigcup\limits_{n=1}^N \left(A\cap I_n\right)$ and $A\cap \left(\bigcup\limits_{n=1}^N I_n\right)^c=A\setminus \bigcup\limits_{n=1}^N I_n$ are outer measurable. Moreover, if $\{I_n\}_{n=1}^N$ are pairwise disjoint then

$$m_u\left(A\cap\left(\bigcup_{n=1}^NI_n\right)\right)=\sum_{n=1}^Nm_u(A\cap I_n)$$

• If $A\subset \mathscr{R}$ is outer measurable and if $\{J_n\}_{n=1}^\infty$ is a sequence of pairwise disjoint intervals in \mathscr{R} with $\lim_{n\to\infty} l(J_n)=0$ then

 $A \cap \left(\bigcup_{n=1}^{\infty} J_n\right)$ is outer measurable and

$$m_u\left(A\cap\left(\bigcup_{n=1}^{\infty}J_n\right)\right)=\sum_{n=1}^{\infty}m_u(A\cap J_n).$$

• If $A \subset \mathcal{R}$ is outer measurable and if $\{I_n\}_{n=1}^N$ are intervals in \mathcal{R} then $A \cap \left(\bigcup_{n=1}^N I_n\right) = \bigcup_{n=1}^N \left(A \cap I_n\right)$ and $A \cap \left(\bigcup_{n=1}^N I_n\right)^c = A \setminus \bigcup_{n=1}^N I_n$ are outer measurable. Moreover, if $\{I_n\}_{n=1}^N$ are pairwise disjoint then

$$m_u\left(A\cap\left(\bigcup_{n=1}^NI_n\right)\right)=\sum_{n=1}^Nm_u(A\cap I_n)$$

• If $A\subset \mathscr{R}$ is outer measurable and if $\{J_n\}_{n=1}^\infty$ is a sequence of pairwise disjoint intervals in \mathscr{R} with $\lim_{n\to\infty} l(J_n)=0$ then

 $A \cap \left(\bigcup_{n=1}^{\infty} J_n\right)$ is outer measurable and

$$m_u\left(A\cap\left(\bigcup_{n=1}^\infty J_n\right)\right)=\sum_{n=1}^\infty m_u(A\cap J_n).$$

• If $A\subset \mathscr{R}$ is outer measurable and if $\{I_n\}_{n=1}^N$ are intervals in \mathscr{R} then $A\cup \left(\bigcup\limits_{n=1}^N I_n\right)$ is outer measurable. Moreover, if $\{I_n\}_{n=1}^N$ and A are pairwise disjoint then

$$m_u\left(A \cup \left(\bigcup_{n=1}^N I_n\right)\right) = m_u(A) + \sum_{n=1}^N l(I_n)$$

• If $A\subset \mathscr{R}$ is outer measurable and if $\{I_n\}_{n=1}^\infty$ is a collection of intervals in \mathscr{R} such that $\lim_{n\to\infty} l(I_n)=0$ then $A\cup \left(\bigcup_{n=1}^\infty I_n\right)$ is outer measurable. Moreover, if A and the I_n 's are pairwise disjoint then

$$m_u\left(A \cup \left(\bigcup_{n=1}^{\infty} I_n\right)\right) = m_u(A) + \sum_{n=1}^{\infty} l(I_n)$$

• If X is a dense subset of an interval I in \mathcal{R} then X is outer measurable and $m_u(X) = l(I)$.

• If $A\subset \mathscr{R}$ is outer measurable and if $\{I_n\}_{n=1}^N$ are intervals in \mathscr{R} then $A\cup \left(\bigcup\limits_{n=1}^N I_n\right)$ is outer measurable. Moreover, if $\{I_n\}_{n=1}^N$ and A are pairwise disjoint then

$$m_u\left(A \cup \left(\bigcup_{n=1}^N I_n\right)\right) = m_u(A) + \sum_{n=1}^N l(I_n)$$

• If $A\subset \mathscr{R}$ is outer measurable and if $\{I_n\}_{n=1}^\infty$ is a collection of intervals in \mathscr{R} such that $\lim_{n\to\infty} l(I_n)=0$ then $A\cup \left(\bigcup_{n=1}^\infty I_n\right)$ is outer measurable. Moreover, if A and the I_n 's are pairwise disjoint then

$$m_u\left(A \cup \left(\bigcup_{n=1}^{\infty} I_n\right)\right) = m_u(A) + \sum_{n=1}^{\infty} l(I_n).$$

• If X is a dense subset of an interval I in \mathcal{R} then X is outer measurable and $m_u(X) = l(I)$.

• If $A\subset \mathscr{R}$ is outer measurable and if $\{I_n\}_{n=1}^N$ are intervals in \mathscr{R} then $A\cup \left(\bigcup\limits_{n=1}^N I_n\right)$ is outer measurable. Moreover, if $\{I_n\}_{n=1}^N$ and A are pairwise disjoint then

$$m_u\left(A \cup \left(\bigcup_{n=1}^N I_n\right)\right) = m_u(A) + \sum_{n=1}^N l(I_n)$$

• If $A\subset \mathscr{R}$ is outer measurable and if $\{I_n\}_{n=1}^\infty$ is a collection of intervals in \mathscr{R} such that $\lim_{n\to\infty} l(I_n)=0$ then $A\cup \left(\bigcup_{n=1}^\infty I_n\right)$ is outer measurable. Moreover, if A and the I_n 's are pairwise disjoint then

$$m_u\left(A \cup \left(\bigcup_{n=1}^{\infty} I_n\right)\right) = m_u(A) + \sum_{n=1}^{\infty} l(I_n).$$

• If X is a dense subset of an interval I in \mathcal{R} then X is outer measurable and $m_u(X) = l(I)$.

Outline for Section 4

- Introduction: the Levi-Civita Fields $\mathcal R$ and $\mathcal C$
- 2 Outer Measure on R
- $oldsymbol{3}$ A Lebesgue-like Measure on ${\mathscr R}$
- 4 Simple Functions on Measurable Sets
- Measurable Functions
- 6 A Lebesgue-like Integral

The Measure

<u>**Definition**</u>: Let $A \subset \mathcal{R}$ be an outer measurable set. Then we say that A is measurable if for every other outer measurable set $B \subset \mathcal{R}$ both $A \cap B$ and $A^c \cap B$ are outer measurable and

$$m_u(B) = m_u(A \cap B) + m_u(A^c \cap B).$$

In this case, we define the measure of A to be $m(A) := m_u(A)$.

Properties of the Measure

• If $A,B\subset \mathcal{R}$ are measurable then $A\cap B,A\cup B,A\cap B^c$ are measurable, with

$$m(A \cup B) = m(A) + m(B) - m(A \cap B).$$

• If $C \subset \mathcal{R}$ is outer measurable with $m_u(C) = 0$ then C is measurable with m(C) = 0.

Properties of the Measure

• If $A,B\subset \mathcal{R}$ are measurable then $A\cap B,A\cup B,A\cap B^c$ are measurable, with

$$m(A \cup B) = m(A) + m(B) - m(A \cap B).$$

• If $C \subset \mathcal{R}$ is outer measurable with $m_u(C) = 0$ then C is measurable with m(C) = 0.

- For each $n \in \mathbb{N}$, let $A_n \subset \mathcal{R}$ be measurable.
 - $\bullet \ \ \text{If} \ \lim_{N\to\infty} m\left(\bigcup_{n=1}^N A_n\right) \text{ exists in } \mathscr{R} \text{ then } \bigcup_{n=1}^\infty A_n \text{ is measurable and has measure}$

$$m\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} m\left(\bigcup_{n=1}^{N} A_n\right)$$

• If $\lim_{N\to\infty} m\left(\bigcap_{n=1}^N A_n\right)$ exists in $\mathscr R$ then $\bigcap_{n=1}^\infty A_n$ is measurable and has measure

$$m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} m\left(\bigcap_{n=1}^{N} A_n\right).$$

• For each $n \in \mathbb{N}$, let $A_n \subset \mathcal{R}$ be measurable.

• If $\lim_{N\to\infty} m\left(\bigcup_{n=1}^N A_n\right)$ exists in $\mathscr R$ then $\bigcup_{n=1}^\infty A_n$ is measurable and has measure

$$m\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} m\left(\bigcup_{n=1}^{N} A_n\right).$$

• If $\lim_{N\to\infty} m\left(\bigcap_{n=1}^N A_n\right)$ exists in $\mathscr R$ then $\bigcap_{n=1}^\infty A_n$ is measurable and has measure

$$m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} m\left(\bigcap_{n=1}^{N} A_n\right).$$

- For each $n \in \mathbb{N}$, let $A_n \subset \mathcal{R}$ be measurable.
 - If $\lim_{N\to\infty} m\left(\bigcup_{n=1}^N A_n\right)$ exists in $\mathscr R$ then $\bigcup_{n=1}^\infty A_n$ is measurable and has measure

$$m\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} m\left(\bigcup_{n=1}^{N} A_n\right).$$

• If $\lim_{N\to\infty} m\left(\bigcap_{n=1}^N A_n\right)$ exists in $\mathscr R$ then $\bigcap_{n=1}^\infty A_n$ is measurable and has measure

$$m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} m\left(\bigcap_{n=1}^{N} A_n\right)$$

- For each $n \in \mathbb{N}$, let $A_n \subset \mathcal{R}$ be measurable.
 - If $\lim_{N\to\infty} m\left(\bigcup_{n=1}^N A_n\right)$ exists in $\mathscr R$ then $\bigcup_{n=1}^\infty A_n$ is measurable and has measure

$$m\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} m\left(\bigcup_{n=1}^{N} A_n\right).$$

• If $\lim_{N\to\infty} m\left(\bigcap_{n=1}^N A_n\right)$ exists in $\mathscr R$ then $\bigcap_{n=1}^\infty A_n$ is measurable and has measure

$$m\left(\bigcap_{n=1}^{\infty}A_n\right) = \lim_{N\to\infty}m\left(\bigcap_{n=1}^{N}A_n\right).$$

Outline for Section 5

- 1 Introduction: the Levi-Civita Fields $\mathcal R$ and $\mathcal C$
- 2 Outer Measure on R
- 4 Simple Functions on Measurable Sets
- Measurable Functions
- 6 A Lebesgue-like Integral

<u>Definition</u>: Let $A \subseteq \mathcal{R}$ be measurable and let $f: A \to \mathcal{R}$ be bounded. We say that f is a simple function on A if for all $\epsilon > 0$ there exist some collection of mutually disjoint intervals $\{I_n\}_{n=1}^{\infty}$ (which we will call interval cover) and a bounded function $\hat{f}: \bigcup_{n=1}^{\infty} I_n \to \mathcal{R}$ such that

 $A\subseteq\bigcup_{n=1}^{\infty}I_n, \sum_{n=1}^{\infty}l(I_n)-m(A)<\epsilon, \hat{f}$ is analytic on each I_n and for all $x\in A, f(x)=\hat{f}(x)$. We call such a function a simple extension of f over $\bigcup_{n=1}^{\infty}I_n$.

<u>Definition</u>: Let $A\subseteq \mathscr{R}$ be measurable and let $f:A\to \mathscr{R}$ be bounded. We say that f is a simple function on A if for all $\epsilon>0$ there exist some collection of mutually disjoint intervals $\{I_n\}_{n=1}^\infty$ (which we will call interval cover) and a bounded function $\hat{f}:\bigcup_{n=1}^\infty I_n\to \mathscr{R}$ such that $A\subseteq\bigcup_{n=1}^\infty I_n, \sum_{n=1}^\infty l(I_n)-m(A)<\epsilon, \hat{f}$ is analytic on each I_n and for all

 $A\subseteq\bigcup_{n=1}^{\infty}I_n, \ \sum_{n=1}^{\infty}l(I_n)-m(A)<\epsilon, \ f$ is analytic on each I_n and for all $x\in A, \ f(x)=\hat{f}(x).$ We call such a function a simple extension of f over $\bigcup_{n=1}^{\infty}I_n.$

Integral of a Simple Function

Theorem: Let $A \subseteq \mathcal{R}$ be measurable and let $f: A \to \mathcal{R}$ be simple. Then, the limit

$$\lim_{k\to\infty}\sum_{n=1}^{\infty}\int_{I_n^k}\hat{f}\,dx$$

exists and is both independent of the choice of the simple extension \hat{f} of f and of the sequence of intervals $\{I_n^k\}$ that converges to A; i.e.

$$\lim_{k \to \infty} \sum_{n=1}^{\infty} l\left(I_n^k\right) = m(A).$$

<u>Definition</u>: Let $A \subseteq \mathcal{R}$ be measurable and let $f: A \to \mathcal{R}$ be simple. We define

$$\int_{A} f \, dx := \lim_{k \to \infty} \sum_{n=1}^{\infty} \int_{I_{n}^{k}} \hat{f} \, dx$$

where \hat{f} is a simple extension of f and $\{I_n^k\}$ is a sequence of interval coverings of A that converges to A.

Integral of a Simple Function

Theorem: Let $A\subseteq \mathscr{R}$ be measurable and let $f:A\to \mathscr{R}$ be simple. Then, the limit

$$\lim_{k \to \infty} \sum_{n=1}^{\infty} \int_{I_n^k} \hat{f} \, dx$$

exists and is both independent of the choice of the simple extension \hat{f} of f and of the sequence of intervals $\{I_n^k\}$ that converges to A; i.e.

$$\lim_{k \to \infty} \sum_{n=1}^{\infty} l(I_n^k) = m(A).$$

<u>Definition</u>: Let $A \subseteq \mathcal{R}$ be measurable and let $f: A \to \mathcal{R}$ be simple. We define

$$\int_{A} f \, dx := \lim_{k \to \infty} \sum_{n=1}^{\infty} \int_{I_{n}^{k}} \hat{f} \, dx$$

where \hat{f} is a simple extension of f and $\{I_n^k\}$ is a sequence of interval coverings of A that converges to A.

Outline for Section 6

- 1 Introduction: the Levi-Civita Fields $\mathcal R$ and $\mathcal C$
- 2 Outer Measure on R
- ${\color{red} oldsymbol{3}}$ A Lebesgue-like Measure on ${\mathscr{R}}$
- 4 Simple Functions on Measurable Sets
- Measurable Functions
- 6 A Lebesgue-like Integral

<u>Definition</u>: Let $A \subseteq \mathcal{R}$ be measurable. We say that a collection $\{A_n\}_{n=1}^{\infty}$ of mutually disjoint measurable sets is a partition of A if

$$A = \bigcup_{n=1}^{\infty} A_n$$
 and $m(A_n) \underset{n \to \infty}{\longrightarrow} 0$.

<u>Definition</u>: Let $A\subseteq \mathcal{R}$ be measurable and let $f:A\to \mathcal{R}$ be a function. We say that f is measurable if for every $\epsilon>0$ there exists a partition $\{A_n\}_{n=1}^\infty$ of A and two collections of simple functions $\{i_n:A_n\to \mathcal{R}\}_{n=1}^\infty$, $\{s_n:A_n\to \mathcal{R}\}_{n=1}^\infty$ such that $i_n\leq f\leq s_n$ for each n, the series $\sum\limits_{n=1}^\infty \int_{A_n} |s_n|\,dx$ and $\sum\limits_{n=1}^\infty \int_{A_n} |i_n|\,dx$ both converge in \mathcal{R} and

$$\sum_{n=1}^{\infty} \int_{A_n} (s_n - i_n) \, dx < \epsilon.$$

<u>Definition</u>: Let $A \subseteq \mathcal{R}$ be measurable. We say that a collection $\{A_n\}_{n=1}^{\infty}$ of mutually disjoint measurable sets is a partition of A if $A = \bigcup_{n=1}^{\infty} A_n$ and $m(A_n) \underset{n \to \infty}{\to} 0$.

$$\sum_{n=1}^{\infty} \int_{A_n} (s_n - i_n) \, dx < \epsilon.$$

- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then f is locally bounded.
- If $A\subseteq \mathcal{R}$ and $f,g:A\to \mathcal{R}$ are measurable, and if $\alpha\in \mathcal{R}$ then $\alpha f+g$ is measurable on A.
- If $B \subseteq A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then the restriction of f to B is measurable.
- If $A, B \subseteq \mathcal{R}$ are measurable and $f: A \cup B \to \mathcal{R}$ is a function then f is measurable on $A \cup B$ if and only if it is measurable on A and B.

- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable then f is locally bounded.
- If $A\subseteq \mathcal{R}$ and $f,g:A\to \mathcal{R}$ are measurable, and if $\alpha\in \mathcal{R}$ then $\alpha f+g$ is measurable on A.
- If $B \subseteq A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then the restriction of f to B is measurable.
- If $A, B \subseteq \mathcal{R}$ are measurable and $f: A \cup B \to \mathcal{R}$ is a function then f is measurable on $A \cup B$ if and only if it is measurable on A and B.

- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then f is locally bounded.
- If $A\subseteq \mathcal{R}$ and $f,g:A\to \mathcal{R}$ are measurable, and if $\alpha\in \mathcal{R}$ then $\alpha f+g$ is measurable on A.
- If $B \subseteq A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then the restriction of f to B is measurable.
- If $A, B \subseteq \mathcal{R}$ are measurable and $f: A \cup B \to \mathcal{R}$ is a function then f is measurable on $A \cup B$ if and only if it is measurable on A and B.

- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then f is locally bounded.
- If $A\subseteq \mathcal{R}$ and $f,g:A\to \mathcal{R}$ are measurable, and if $\alpha\in \mathcal{R}$ then $\alpha f+g$ is measurable on A.
- If $B \subseteq A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then the restriction of f to B is measurable.
- If $A, B \subseteq \mathcal{R}$ are measurable and $f: A \cup B \to \mathcal{R}$ is a function then f is measurable on $A \cup B$ if and only if it is measurable on A and B.

- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then |f| is measurable.
- If $A \subseteq \mathcal{R}$ and $f, g : A \to \mathcal{R}$ are measurable then the functions $\min\{f,g\}$ and $\max\{f,g\}$ are measurable.
- If $A \subseteq \mathcal{R}$ is measurable and $f: A \to \mathcal{R}$ is a function then f is measurable if and only if $f_+ := \max\{f, 0\}$ and $f_- := \max\{-f, 0\}$ are measurable.
- If $A\subseteq \mathcal{R}$ is measurable and $f,g:A\to \mathcal{R}$ are measurable with g bounded on A then $f\cdot g$ is measurable.

- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then |f| is measurable.
- If $A\subseteq \mathscr{R}$ and $f,g:A\to \mathscr{R}$ are measurable then the functions $\min\{f,g\}$ and $\max\{f,g\}$ are measurable.
- If $A \subseteq \mathcal{R}$ is measurable and $f: A \to \mathcal{R}$ is a function then f is measurable if and only if $f_+ := \max\{f, 0\}$ and $f_- := \max\{-f, 0\}$ are measurable.
- If $A \subseteq \mathcal{R}$ is measurable and $f,g:A \to \mathcal{R}$ are measurable with g bounded on A then $f\cdot g$ is measurable.

- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then |f| is measurable.
- If $A\subseteq \mathcal{R}$ and $f,g:A\to \mathcal{R}$ are measurable then the functions $\min\{f,g\}$ and $\max\{f,g\}$ are measurable.
- If $A \subseteq \mathcal{R}$ is measurable and $f: A \to \mathcal{R}$ is a function then f is measurable if and only if $f_+ := \max\{f, 0\}$ and $f_- := \max\{-f, 0\}$ are measurable.
- If $A \subseteq \mathcal{R}$ is measurable and $f,g:A \to \mathcal{R}$ are measurable with g bounded on A then $f\cdot g$ is measurable.

- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable then |f| is measurable.
- If $A\subseteq \mathcal{R}$ and $f,g:A\to \mathcal{R}$ are measurable then the functions $\min\{f,g\}$ and $\max\{f,g\}$ are measurable.
- If $A \subseteq \mathcal{R}$ is measurable and $f: A \to \mathcal{R}$ is a function then f is measurable if and only if $f_+ := \max\{f, 0\}$ and $f_- := \max\{-f, 0\}$ are measurable.
- If $A\subseteq \mathscr{R}$ is measurable and $f,g:A\to \mathscr{R}$ are measurable with g bounded on A then $f\cdot g$ is measurable.

• If $A\subseteq \mathscr{R}$ and $f:A\to \mathscr{R}$ are measurable then the set

$$U_{f,A} := \left\{ \sum_{n=1}^{\infty} \int_{A_n} s_n \, dx : \{A_n\}_{n=1}^{\infty} \text{ is a partition of } A, \, s_n \text{ simple on } A_n, \right\}$$

the series
$$\sum_{n=1}^{\infty} \int_{A_n} |s_n| \, dx$$
 converges in $\mathscr R$ and $f \leq s_n$

has an infimum. Also, the set

$$L_{f,A} := \left\{ \sum_{n=1}^{\infty} \int_{A_n} i_n \, dx : \{A_n\}_{n=1}^{\infty} \text{ is a partition of } A, \, i_n \text{ simple on } A_n, \right.$$

the series
$$\sum_{n=1}^{\infty} \int_{A_n} |i_n| \, dx$$
 converges in $\mathscr R$ and $i_n \leq f$

has a supremum. Moreover,

$$\inf(U_{f,A}) = \sup(L_{f,A}).$$

Outline for Section 7

- \bigcirc Introduction: the Levi-Civita Fields $\mathscr R$ and $\mathscr C$
- 2 Outer Measure on R
- 4 Simple Functions on Measurable Sets
- Measurable Functions
- 6 A Lebesgue-like Integral

The integral

<u>Definition</u>: Let $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ be measurable. We define the integral of f over A to be

$$\int_A f \, dx := \inf(U_{f,A}) = \sup(L_{f,A}).$$

- If $A\subseteq \mathscr{R}$ is measurable and if $\alpha\in \mathscr{R}$ then $\int_A \alpha\,dx=\alpha m(A)$.
- Linearity: If $A\subseteq \mathcal{R}$ and $f,g:A\to \mathcal{R}$ are measurable and if $\alpha\in \mathcal{R}$ then

$$\int_{A} (\alpha f + g) \, dx = \alpha \int_{A} f \, dx + \int_{A} g \, dx$$

- If $A \subseteq \mathcal{R}$ is measurable with m(A) = 0 and $f : A \to \mathcal{R}$ is a function then f is measurable on A and $\int_A f \, dx = 0$.
- If $A \subseteq \mathcal{R}$ is measurable and $f,g:A \to \mathcal{R}$ are functions such that f=g a.e. in A then, f is measurable on A if and only if g is measurable on A, in which case, we have $\int_A f \, dx = \int_A g \, dx$.
- If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable with $f \ge 0$ a.e. on A then $\int_A f \, dx \ge 0$. Moreover, $\int_A f \, dx = 0$ if and only if f = 0 a.e. on A.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $|f|\leq M$ a.e. on A then $\left|\int_A f\,dx\right|\leq Mm(A)$.

- If $A\subseteq \mathscr{R}$ is measurable and if $\alpha\in \mathscr{R}$ then $\int_A \alpha\,dx=\alpha m(A)$.
- Linearity: If $A\subseteq \mathscr{R}$ and $f,g:A\to \mathscr{R}$ are measurable and if $\alpha\in \mathscr{R}$ then

$$\int_{A} (\alpha f + g) dx = \alpha \int_{A} f dx + \int_{A} g dx.$$

- If $A \subseteq \mathcal{R}$ is measurable with m(A) = 0 and $f : A \to \mathcal{R}$ is a function then f is measurable on A and $\int_A f \, dx = 0$.
- If $A \subseteq \mathcal{R}$ is measurable and $f,g:A \to \mathcal{R}$ are functions such that f=g a.e. in A then, f is measurable on A if and only if g is measurable on A, in which case, we have $\int_A f \, dx = \int_A g \, dx$.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $f\geq 0$ a.e. on A then $\int_A f \, dx \geq 0$. Moreover, $\int_A f \, dx = 0$ if and only if f=0 a.e. on A.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $|f|\leq M$ a.e. on A then $\left|\int_A f\,dx\right|\leq Mm(A)$.

- If $A\subseteq \mathscr{R}$ is measurable and if $\alpha\in \mathscr{R}$ then $\int_A \alpha\,dx=\alpha m(A)$.
- Linearity: If $A\subseteq \mathscr{R}$ and $f,g:A\to \mathscr{R}$ are measurable and if $\alpha\in \mathscr{R}$ then

$$\int_{A} (\alpha f + g) dx = \alpha \int_{A} f dx + \int_{A} g dx.$$

- If $A\subseteq \mathscr{R}$ is measurable with m(A)=0 and $f:A\to \mathscr{R}$ is a function then f is measurable on A and $\int_A f\,dx=0$.
- If $A\subseteq \mathscr{R}$ is measurable and $f,g:A\to \mathscr{R}$ are functions such that f=g a.e. in A then, f is measurable on A if and only if g is measurable on A, in which case, we have $\int_A f \, dx = \int_A g \, dx$.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $f\geq 0$ a.e. on A then $\int_A f \, dx \geq 0$. Moreover, $\int_A f \, dx = 0$ if and only if f=0 a.e. on A.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $|f|\leq M$ a.e. on A then $\left|\int_A f\,dx\right|\leq Mm(A)$.

- If $A\subseteq \mathscr{R}$ is measurable and if $\alpha\in \mathscr{R}$ then $\int_A \alpha\,dx=\alpha m(A)$.
- Linearity: If $A\subseteq \mathscr{R}$ and $f,g:A\to \mathscr{R}$ are measurable and if $\alpha\in \mathscr{R}$ then

$$\int_{A} (\alpha f + g) dx = \alpha \int_{A} f dx + \int_{A} g dx.$$

- If $A\subseteq \mathscr{R}$ is measurable with m(A)=0 and $f:A\to \mathscr{R}$ is a function then f is measurable on A and $\int_A f\,dx=0$.
- If $A\subseteq \mathscr{R}$ is measurable and $f,g:A\to \mathscr{R}$ are functions such that f=g a.e. in A then, f is measurable on A if and only if g is measurable on A, in which case, we have $\int_A f \, dx = \int_A g \, dx$.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $f\geq 0$ a.e. on A then $\int_A f \, dx \geq 0$. Moreover, $\int_A f \, dx = 0$ if and only if f=0 a.e. on A.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $|f|\leq M$ a.e. on A then $\left|\int_A f\,dx\right|\leq Mm(A)$.

- If $A\subseteq \mathscr{R}$ is measurable and if $\alpha\in \mathscr{R}$ then $\int_A \alpha\,dx=\alpha m(A)$.
- Linearity: If $A\subseteq \mathscr{R}$ and $f,g:A\to \mathscr{R}$ are measurable and if $\alpha\in \mathscr{R}$ then

$$\int_{A} (\alpha f + g) dx = \alpha \int_{A} f dx + \int_{A} g dx.$$

- If $A \subseteq \mathscr{R}$ is measurable with m(A) = 0 and $f : A \to \mathscr{R}$ is a function then f is measurable on A and $\int_A f \, dx = 0$.
- If $A\subseteq \mathscr{R}$ is measurable and $f,g:A\to \mathscr{R}$ are functions such that f=g a.e. in A then, f is measurable on A if and only if g is measurable on A, in which case, we have $\int_A f\,dx=\int_A g\,dx$.
- If $A\subseteq \mathscr{R}$ and $f:A\to \mathscr{R}$ are measurable with $f\geq 0$ a.e. on A then $\int_A f\,dx\geq 0$. Moreover, $\int_A f\,dx=0$ if and only if f=0 a.e. on A.
- If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable with $|f|\leq M$ a.e. on A then $\left|\int_A f\,dx\right|\leq Mm(A)$.

- If $A\subseteq \mathscr{R}$ is measurable and if $\alpha\in \mathscr{R}$ then $\int_A \alpha\,dx=\alpha m(A)$.
- Linearity: If $A\subseteq \mathscr{R}$ and $f,g:A\to \mathscr{R}$ are measurable and if $\alpha\in \mathscr{R}$ then

$$\int_{A} (\alpha f + g) dx = \alpha \int_{A} f dx + \int_{A} g dx.$$

- If $A \subseteq \mathcal{R}$ is measurable with m(A) = 0 and $f : A \to \mathcal{R}$ is a function then f is measurable on A and $\int_A f \, dx = 0$.
- If $A \subseteq \mathscr{R}$ is measurable and $f,g:A \to \mathscr{R}$ are functions such that f=g a.e. in A then, f is measurable on A if and only if g is measurable on A, in which case, we have $\int_A f \, dx = \int_A g \, dx$.
- If $A\subseteq \mathscr{R}$ and $f:A\to \mathscr{R}$ are measurable with $f\geq 0$ a.e. on A then $\int_A f\,dx\geq 0$. Moreover, $\int_A f\,dx=0$ if and only if f=0 a.e. on A.
- If $A\subseteq \mathscr{R}$ and $f:A\to \mathscr{R}$ are measurable with $|f|\leq M$ a.e. on A then $\left|\int_A f\,dx\right|\leq Mm(A).$

• Additivity: If $A, B \subseteq \mathcal{R}$ are measurable with $B \subseteq A$ and if $f: A \to \mathcal{R}$ is measurable then

$$\int_{A} f \, dx = \int_{B} f \, dx + \int_{A \setminus B} f \, dx.$$

• Countable Additivity: If $A \subseteq \mathcal{R}$ and $f: A \to \mathcal{R}$ are measurable and if $\{A_n\}_{n=1}^{\infty}$ is a partition of A then

$$\int_{A} f \, dx = \sum_{n=1}^{\infty} \int_{A_n} f \, dx$$

• Additivity: If $A, B \subseteq \mathcal{R}$ are measurable with $B \subseteq A$ and if $f: A \to \mathcal{R}$ is measurable then

$$\int_{A} f \, dx = \int_{B} f \, dx + \int_{A \setminus B} f \, dx.$$

• Countable Additivity: If $A\subseteq \mathcal{R}$ and $f:A\to \mathcal{R}$ are measurable and if $\{A_n\}_{n=1}^\infty$ is a partition of A then

$$\int_{A} f \, dx = \sum_{n=1}^{\infty} \int_{A_n} f \, dx.$$

Theorem: If $A \subseteq \mathcal{R}$ is measurable and $f: A \to \mathcal{R}$ is a function then f is measurable on A if and only if there exists some partition $\{A_n\}_{n=1}^{\infty}$ of A such that f is measurable and bounded on each A_n and the series

$$\sum_{n=1}^{\infty} \int_{A_n} |f| \, dx$$

converges. Furthermore,

$$\int_{A} f \, dx = \sum_{n=1}^{\infty} \int_{A_n} f \, dx.$$

Classical Theorems

Fundamental Theorem of Calculus: If $f:[a,b]\to \mathscr{R}$ is a measurable function that is continuous at $c\in[a,b]$ then $F:[a,b]\to \mathscr{R}$ given by

$$F(x) := \int_{a}^{x} f(t) dt$$

is differentiable at c and has derivative F'(c) = f(c).

<u>Uniform Convergence Theorem</u>: If $(f_n:A\to\mathscr{R})_{n\in\mathbb{N}}$ is a sequence of measurable functions that converges uniformly to a function $f:A\to\mathscr{R}$ then f is measurable on A. Furthermore,

$$\int_{A} f \, dx = \lim_{n \to \infty} \int_{A} f_n \, dx$$

Classical Theorems

<u>Fundamental Theorem of Calculus</u>: If $f:[a,b]\to \mathscr{R}$ is a measurable function that is continuous at $c\in[a,b]$ then $F:[a,b]\to \mathscr{R}$ given by

$$F(x) := \int_{a}^{x} f(t) dt$$

is differentiable at c and has derivative F'(c) = f(c).

<u>Uniform Convergence Theorem</u>: If $(f_n:A\to\mathscr{R})_{n\in\mathbb{N}}$ is a sequence of measurable functions that converges uniformly to a function $f:A\to\mathscr{R}$ then f is measurable on A. Furthermore,

$$\int_A f \, dx = \lim_{n \to \infty} \int_A f_n \, dx.$$

Thank you for your attention!