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Introduction

Special theory of relativity

@ Quantum field theory is one of most important theories in physucs. It combines the
quantum theory, the field concept and the principle of special relativity.
Since we will be working here with classical free theory we will pay attention to Special
theory of relativity

@ Symmetries of Minkowski space-time
Poincare transformations are all four dimensional rotations (space rotations and boosts) and
translations which preserve lline element.
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Introduction

Quantum field theory

@ |In traditional approach quantum field theory starts with with well known equations

Klein-Gordn s = 0,

Dirac s = %,
Maxwell s =1,
Rarita-Schwinger s = %
Einstein s = 2, ...
equations s > 2

@ Is it possible to unify all these equations with arbitrary spin?
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Introduction

Number of Principle field equations for Poincare group

@ Ansver for Poincare group

@ For massive particles there are two particle properties mass m and spin s and there are two
Poincare Casinmir operators. In fact mass and spin are eigenvalues of Poincare Casinmir
operators.

@ For massless particles there is one particle property helicity A and there is one Poincare
Casinmir operator.

@ Covariant description of helicity needs three independent equations. One is enough to
describe helicity. What is the role of the other two equations? They are the source of local
gauge invariance, well known for massless fields.

@ Lorentz transformations are source of local gauge transformations for massless fields
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Introduction

In order to describe field theory we will prefer \Weinberg approach that uses Wigner's
definition of particles as irreducible representations of Poincare group .

Unlike Weinberg approach which starts with particles and get to the field equations later we
will start with principle field equations for arbitrary spin and show that all known equations
for free fields follow from our principal equations.

We offer a general prescription which can be used to construct field theory based on
symmetry group of the system. So, all theories with same symmetry group will look the
same at sufficiently low energy. Here we will apply this prescription to the Poincare group.
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Principle field equations in massive case

Poincare algebra

@ Lie algebra of Poincare group has a form

[PosPol =0, [Pe,Map] = —i(mbcPa — 1cPs) (1)

[Map, Mcg] = i(nad/\/’bc + NbeMad — Nac Mpg — ﬁbd’\/’ac) ; (2)

@ P, are translation generators and

@ M,, = L,p + S,p are four dimensional rotations generators
They consist of orbital part L,, = x3Pp — x,P5 and spin part S,p.

B. Sazdovic rom asimir invariants to equa [e]



Principle field equations in massive case

Poincare Casimir operators

@ Casimir operators are expressions which commute with all group generators and allow us to
label the irreducible representations
@ For P2 > 0 there are two Casimir operators which eigenvalues are mass m and spin s
P2 =m?, W2 = —m?s(s+1). 3)

@ Pauli-Lubanski vector

1
W, = iaabchbCPd- (4)
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Principle field equations in massive case

Principle field equations

@ We will introduce field W#(x) where A contains the set of vector and spinor indices. In
order to separate states which describe definite particles we should impose some constraints
on the field WA(x)

@ Since in field theory particles are defined by mass and spin it is natural to use just operators
whose eigenvalues are mass and spin

@ We will postulate principle field equations for arbitrary spin as representation of relations (3)
(P)'eWB(x) = mWA(x),  8%WE(x) = s(s + VA(x). (5)

These equations are Poincare covariant because Casimir operators commute with all
Poincare generators

@ In particular, Casimir operators commute mutually. Since commuting observables have a
complete set of common eigenfunctions we are able to impose both Casimir operators to the
same field WA(x).
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Principle field equations in massive case

Representation of Casimir operators

@ To find representation of Casimir operators we need representation of Poincare algebra
generators, momentum P, and spin S,

@ Representation of momentum P, is well known from quantum mechanics (P,)*g — idéaa
and it is spins independent.

@ Spin generators (S,5)"g act as derivatives

(Sab)*Bcp = (Sap)* 05 + 68(San)Bp (6)

The initial expression for Dirac spinor and vector fields are

i 4 C C
(Sap)¥p = Z[’Ya»’Yb]aB , (Sap)a = l(5anbd - 5bnad) (7)

and we can find representations for all other fields using recurrence relation
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Principle field equations in massive case

Standard momentum

@ To simplify the calculation it is useful to go to frame of standard momentum.

@ For massive case where p?> = m?

standard momentum.
@ With this choice the Klein-Gordon equation is solved.

we can chose rest frame momentum k? = (m,0,0,0) as

@ For standard momentum differential equation become algebraic ones. After solving algebraic
equation we can go back to p? dependent solutions, expressing any momentum p? as
Lorentz transformation of k?

p* = Ls(p)k®, ©)

and then to solution in coordinate representation.
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Principle field equations in massive case

Principle field equations for standard momentum

@ The spin equation for standard momentum takes a form

SApWE (k) = s(s+ 1)WA(k), (9
where
8% =(57)"s, (S)'s = %EUk(Sjk)AB~ (10)

@ Note that instead of 6 components of spin operator S,;, in the frame of standard momentum
we have left with 3 components S;, which are generators of space rotations. They form a
subgroup known as little group for massive Poinacare case.
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Principle field equations in massive case

Projection operators and equation of motion

@ To have nontrivial solution for function WA the characteristic polynomial must vanish
det (S%5 —AB) =0,  A=s(s+1). (11)

The values s;, corresponding to the eigenvalues )\;, are spins of irreducible representations.

@ The representations of eigenfunctions \IJIA with definite spin have a form

M (5-3)]'e

v = (P) V", (P)s = [ ;
[T (N =)

i={1,2,---,n}, (12)

where (Pi)AB are corresponding projection operators
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Examples in massive case

Scalar field

@ We are going to confirm the above massive principle field equations for particular spins:
- Klein-Gordon equation for scalar fields (s = 0)

- Dirac equation for spinors (s = %)
- equation for massive vector fields (s = 0 and s; = 1).
- Rarita-Schwinger equation (sp = % and s; = %)

@ A scalar field has no indices WA(x) — ¢(x), so that (S,5)?s — 0. Equation (11) produces
A = 0 and consequently s = 0. We are left with the Klein-Gordon equation

(82 + mQ)Ap(x) —o0. (13)
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Examples in massive case

Dirac field

@ For Dirac field WA(x) — 1)(x) and representation of spin operator is

i
(Sa)B = (Sap)*p = Z[’Ya,%]aﬁ,

1 i 3
Si= > ik Sik = 2SIV 8% =[(S)%s = 153- (14)
@ Then the spin equation takes the form
Segf (k) = Mp2(k),  A=s(s+1) (15)
and since S is diagonal we obtain
3\ 4

det(S — \)%5 = (A— Z> —0. (16)

@ Therefore, A = % which produces spin s = % There is only one trivial projection operator

P%g = 65. We obtain the Klein-Gordon equation for all components (6% + m?)y*(x) = 0.
@ We can linearize it in the form of Dirac equation

(i7%02 + m)y*(x) =0, (17)
where v? are constant matrices. In fact, Dirac equation produces Klein-Gordon equation if
(7" =2n7". (18)

B. Sazdovic rom asimir invariants to equa [e]



Examples in massive case

Vector field 1

@ For vector field we have WA — V2, and from representation of spin operators we obtain

(S = %Eijk(sjk)ab = i ek} Nib 87 = (57)°b = —20j%87 niv - (19)
Therefore, the spin equation in the rest frame takes the form
S2,VE(k)=AV3(k). A=s(s+1) (20)
@ The consistency condition produces
det(S — N, = -2 -2 =0, (21)

with solutions for eigenvalues A\g = 0, A\; = 2 and for spins s =0, s = 1.
@ We obtain two projectors

S? Sy
Po)?s(K) = 67 —
(Po)?b(k) = 0 — 7 7

@ To find irreducible representations in arbitrary frame we should boost corresponding
equation of the rest frame. Then for projection operators we obtain standard form of
longitudinal and transversal projection operators

b 5380, (Pu)?e(k) = 2P =67 — 6369. (22)

(PYo(p) = B2 (PTYu(e) = 3 - 22 (23)
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Examples in massive case

Vector field 2

@ Therefore, solution of the spin equation produces two irreducible representations in
coordinate space

s=0: Vi(x)= a;?b Vi(x), s=1: Vi(x)=Vix)— Vi(x). (24)

@ Equations of motion for massive vector fields, for spins 0 and 1 have a form
(2 +m)vix =0,  (62+m)Vi(x)=0. (25)

If we introduce notation ¢ = 9, V? so that

0,
Vi=Zto, VI =U, (26)
we can rewrite above equations as
(82 + m2>4p(x) =0, (82 + m2) Us(x) =0, (27)

where U, satisfy condition 9,U? = 0. This condition reduces four components of the field
U, to three degrees of freedom. It provides positivity of vector field energy.
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Examples in massive case

Massive Rarita-Schwinger field 1 (Spin operator)

@ For Rarita-Schwinger fields we have A, B — (aa), (b3) and WA — ™ where a, b are vector
and «, 3 spinor indices, so that spin equation takes the form

St = X7, 8% = (7)., A=s(s+1). (28)
Spin operator for Rarita- Schwinger field is
(Sab)““dp = (sab)adg + 3g(fap)% 5, (29)

can be express in terms of spin operators for Dirac fields (f,5)“3 and spin operators for
vector fields (s,5)¢4. Then we have

(S)“ap = (si)adg +g(f)% s, (30)
where for vector and Dirac fields

. i
(s1)a = iepdima, ()% = 7 epm(ym) s (31)
@ Consequently, after some calculation we obtain Rarita-Schwinger spin operator

1
5% = 3(505 — 67 ) 65 — 87 mip(i7)" 5 - (32)
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Examples in massive case

Massive Rarita-Schwinger field 2 (Projectors)

@ We can rewrite Rarita-Schwinger spin operator in the form

3 15
S %5 = Z(Wo)atﬁg + ?(m)ab(i?a‘ = 3(m)* g, (33)

where projectors of vector case (79)?, and (71)?, has been defined in (22) and

1
(M) b5 = 307 mp (717" 6 - (34)
@ With the help of expression §2 = (mg)?p + (71)?p we obtain

15
=

s = (22 (!

)(P1)s, (35)
where we introduced expressions
(Po)’s = (mo+ )%, (P1)%s = (m1 —7)%- (36)
@ It is easy to check that Py and P; are projectors

P2=Py, P?=Py, PoP1=0, Py+P =1. (37)
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Examples in massive case

Massive Rarita-Schwinger field 3 (Spins)

@ The consistency condition produces

3 \h/15 N\
det(S — A)* 5 = (Z - ,\) ’ (T - ,\) " det Py det P, =0, (38)

The solutions for eigenvalues are A\g = % , AL = %5 and for spins sy = % , 81 = %

@ Finally, Rarita-Schwinger projectors in arbitrary frame are

(Po)*bs(p) = (m0)?b05 + %(Wl)ac(ﬂ'l)bd(’yc"/d)aﬁ ;

(P1)*%bs(p) = (m1)7b05 — %(WI)QC(Wl)bd(’YC’Yd)QB : (39)
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Examples in massive case

Massive Rarita-Schwinger field 4 (Spin-3 )

) Spin—% Rarita-Schwinger equations in arbitrary frame consists of Dirac equation for the

vector-spinor field plus supplementary condition.
They can be combined into one equation as linear combination of Dirac equation and
supplementary conditions

~ a
[(i6 — m)Py + Amo + Br + Crag + Do |yt (x) = 0. (40)

@ This equation contain singularities 2. So, we can chose the coefficients A, B, C and D in
such a way that this equation becomes regular.
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Examples in massive case

Massive Rarita-Schwinger field 5 (original
Rarita-Schwinger equation )

@ Finaly we obtain exactly equation from Nieuwenhuizen article
[i6(Py = 2m) = m(Py — 27 = V3 (a0 + WO*))]BW" —0. (41)
@ We can rewrite it in the form
ey pderba(x) + 2 117 Wl (x) = 0. (42)

This is original Rarita-Schwinger equation which can be obtained from the Lagrangian

1- i i
L= —izba (aabc‘jvSw,@c — lmaad) Yd 9ab = 3 [va, Vb - (43)
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Massless case

Casimir operators and standard momentum for massless
Poincare group

@ In the massless case, the square of momentum vanishes P2 = 0. The Casimir operators for
massless Poincare group, is helicity A. The covariant definition of helicity is

1
Wi = AP35, W, = EEadeSbCPdv (44)

where W, is Pauli-Lubanski vector and S, is spin parts of Lorentz generators. Since
P2W, = 0 we can conclude from (44) that P? = 0, as it should be for massless case.

@ It is possible to use non covariant definition of helicity A\ = S;n; as projection of space part
of spin generator S; = %siijjk to momentum axis n; = I:ﬁ' It produces the same
j

spectrum for A but in that case we are losing the crucial possibility to insist on Lorentz
invariance which will product gauge transformations.

B. Sazdovic rom asimir invariants to equa [e]



Massless case

Principle field equations for massless fields

@ We can postulate principle field equations for massless fields WA(x) with helicity A

(Wa) 5WB(x) = A(Pa) s WP (x) . (45)

We claim that this equations

e contains all massless free field equations with arbitrary helicity,
@ is the source of local gauge transformations
@ Principle field equations for standard momentum k? = (1,0,0, —1). take the form

(512)28VE (k) = AWA(K),
(M)*sWB(k) =0, (M2)AWB(k) =0, (46)
@ where
Wo = S10 = W3,
Wi =My = Spo — S32, —Whr =Ty = Sp1 — S31.. (47)

All three generators annihilate standard momentum. So group element W2y, leaves k?
invariant W2,k? = k2, which is definition of little group in massless Poincare case.
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Massless case

Spectrum of helicities

@ We are going to solve the eigenproblem of operator (S12)”p which will produces a spectrum
of helicities \; (i =1,2,---,n). In order that first equation (46) has nontrivial solutions its
characteristic polynomial must vanish

det ((slz)AB - Aaag‘) —0. (48)

The zeros of characteristic polynomial are eigenvalues \;.

@ Next we can construct projection operators (P;)*g corresponding to helicities \;

12 (53] s

(P)*s = - ; (49)
Hj#i ()‘i - )‘j>
and obtain corresponding eigenfunctions
WA(k) = (P) s VB (k). (50)
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Massless case

Lorentz transformations induce gauge transformations

We solved first equation (46) and it produces complete set of eigenvalues and
eigenfunctions. But we have two additional conditions.

In equations for standard momentum (46) operators IN; and Iy should annihilate field
\IJA(k). But explicit calculation shows that this does not happen in some physically relevant
cases. Since equations (46) are condition for Lorentz invariance, violation of these
conditions breaks Lorentz invariance. To measure this violation we introduce expression

SWA(eq, e2)(K) = i(sll'll +s2n2)ABw,B(k), (51)

where €1 and &2 are some parameters.

Fields which violate Lorentz invariance are gauge dependent fields and we will simply call
them gauge fields. They are not representation of Poincare group.
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Examples in massless case

Vector field and Maxwell equations

@ The case of massless vector field is most important. Besides representing electromagnetic
interaction we will see that solutions for massless tensor fields of arbitrary rank comes down
to the case of vector field.

@ For vector field we have A, B — a, b, WA — V2 and
c
(Sab)8 — (Sab> d= i<5§ Nbd — Of, ﬁad) , = (512)%p = i<5f772b - 55771b) . (52)
@ The consistency condition requires that characteristic polynomial vanishes. It means
2 2
det (512 - ,\a) b=XNA—1)(A+1)=0, (53)

with solutions for helicities

X =0, A1=1, A1 =-—1. (54)
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Examples in massless case

Basic vectors

@ We introduce basic vectors
k?=06—-03, q°=03+03, PL=01+id3. (55)
@ Projection operators in terms of basic vectors take the form
1 1 1.
(Po)'s(k) = Sa%ks,  (Po-)"s(k) = Sk®ap,  (Px1)’s(k) = —SFL(P+)s-  (56)
@ The eigenfunctions of operator (S12)?) are

Vi(k) = (P)?V°. (57)
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Examples in massless case

Gauge transformations of massless vector fields

@ Gauge transformations of vector components are
5V (er, 22)(K) = i(=1M + 22M2) "y VE(K), (58)
@ Gauge transformations of basic vectors have simple form
0k =0, 0q = e p? +e_p7, 0P =e+k?. (ex =e1 L ioer) (59)

@ Only component V{§_(k) is gauge invariant, V_(k) = 0, and consequently only this part is
irreducible representation of Poincae group

@ The other components V{, (k) and Vil(k) are not gauge invariant and they transform as

1
VG, (k) = wi p? +w_pT, w+(k) = EkaVasi,

1
oVEi(k) = k*Qx, Qi(k) = *E(l&)beEi . (60)
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Examples in massless case

Action for massless vector field with helicities A\ = +1
produces Maxwell equations

@ The electromagnetic interaction is symmetric under space inversion. Therefore, instead of
two components V2, (k) and V2, (k) we will introduce one vector field A?(k)

A(K) = aVi, (k) + V2, (k). (61)
We also introduce one parameter Q(k) = a4 (k) + BQ_ (k) instead of two components

Q4 (k) and Q_ (k) related by space inversion.

@ Gauge transformation in coordinate representation is

0A?(x) = 97Q(x). (62)

@ Action should depend only on the gauge invariant combination of vector fields, in fact of
field strength F,, = 0,Ap — OpA,. Since it must be scalar we can take

1
h=-3 / d*xFpF?. (63)
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Examples in massless case

Interaction with other fields

@ Interaction with other fields can be described by the action
lint (Aa) - / d*x A? J,. (64)

@ Requirement for gauge invariace /jp; <A3 + 5Aa) = lint (Aa) after partial integration

produces f d*xQ92J, = 0. For arbitrary Q we obtain conservation condition on current

94, =0. (65)
@ The complete action is
1
I =lo+ e = /d4x( - bF + AaJa) . (66)

Variation with respect to A? produces Maxwell equations.
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Examples in massless case

Second rank tensor

@ In the case of second rank tensor we have A — (ab) and WA — T3P,

@ Representation of spin operator for second ranktensor takes a form

ab
(512)ca = pc8h + 320 = (p6 +6p) " ca (67)

(Po)?s = (m0)7b s (P£1)"s = (m£)".  (512)%h = 0%, (68)
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Examples in massless case

Projection operators

@ Using relations p = m4 — 7— and § = mg + 74 + m— we obtain
Sipo=P14+2P,—P_1—2P_5, 86=Pi+Py+P_1+P o+ Py, (69)
where
Py = momo + mpm— + T4, P41 = mom+ + 470, Pio=mimy. (70)

Using the fact that 7, 74+ and 7 are projectors we can conclude that (P;)?° 4

(i = 0,+£1,+2) are projectors also.
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Examples in massless case

Spectrum of second rank tensor

@ For second rank tensor characteristic matrix takes the form

S12— X568 = —AdPy+ (L= Ao)P1+(2—Xo)Po — (1 + Ao)P_1 — (24+ Xo)P_>. (71)
@ Since (P;)? .4 are projectors, characteristic polynomial is already factored and we have
det (512 - Aa&s) = ( - ,\)6 (1 - ,\2)4<4 - )\2) ﬁ detP; = 0. (72)
i=—2
@ Using the fact that det P; # 0 we can find that spectrum of helicities is
A =0, Ay ==+1, Ago = 2. (73)
@ Consequently, the eigenfunctions of operator Si3 in full notation have the form
TP(k) = (P)™ea TK), (i =0,£1,£2) (74)

@ Second rank tensor with helicities A = £2 is of particular importance since its symmetric
part (metric) contribute to general relativity.
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Examples in massless case

Second rank tensor with helicities A = 42 and general
relativity in weak field approximation

@ Second rank tensor with highest helicities A = £2 is symmetric tensor

PN .
T5(k) = (P+2)* e T (k) = 7 (PF)c(P)a T (k)pLAL (75)
Since gravitation interaction is symmetric under space inversion it is common to treat both

components as a single particle called graviton. So, instead of two polarizations Tjg(k) and
T25(k), we will introduce one symmetric tensor

(k) = aT(k) + BT (k). (76)

We also introduce one parameter Q?(k) = a3 (k) + 8Q2 (k) instead of two components
Q3 (k) and Q2 (k) related by space inversion.
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Examples in massless case

@ Gauge transformation in coordinate representation has a form
§h?P(x) = 82QP(x) + 8°Q2(x) . (77)

@ Equation of motion with respect to h?® has two indices. We are going later to include
interaction and so we will take Einstein tensor for free field equation

1
Gab(X) — Rab _ 517abR — acabhac _ 82hab _ aaabh_,’_aaachcb _ 77ab(acadhcd _ 82h) =0
@ Field equation (78) can be obtained from the action

1 1
lo(h?t) = / d&(iachaba%ab — BchapBPh™ 4+ Och* 92 — 5aahaah) . (79)
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Examples in massless case

Interaction with matter

@ |Interaction with matter field ®# we can describe with the action quadratic in h?b
e (h) = / dAxL(h, D) | (80)

Note that the integration measure is the flat Minkowski measure d*x, as Lagrangian is
already quadratic in h2b.

@ From requirement that I;,;(h®®) is gauge invariant l,;(h®® + §h??) = I;,:(h®®) we have

oL

oL
4 ab 4 anb bOa —

/dxdh o = /d (0 + 0" 2%)00 =0, O = (81)
Using partial integration and fact that ©,, is symmetric tensor we obtain that ©, is
conserved energy-momentum tensor, 8,030 = 0.

@ The complete action is I(h??) = Io(h?®) + I;,:(h??). Its variation with respect to h?
produces complete Einstein equations in weak field approximation
Gap(h??) = ©.p. (82)
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Examples in massless case

Massless tensors with arbitrary rank

@ We are going to solve most general equation for integer helicity

(8% — Adp)wB =0, (83)

where WA is tensor with rank n so that WA = T2132"an The problem comes down to that
of vector fields.
@ Using p=m4+ —7m— and § = mp + 7+ + m— we obtain

n

(528 = > k(P — o) 6. (84)

k=1
and delta function for tensors with arbitrary rank

5§=§"=(7T0+7T++7T_)n=Z<Pk+P,k>+Po. (85)
k=1

@ Here (P)*p is sum of all terms mj, i, - - - i, such that Y7 im = k where we count 7 as
w1 and m— as m_1. Note that as all expressions Py are projectors Py Pq = 6xqPyx where
(k,g=0,+£1,42,--- ,4n). The multiplication factor k in (84) is consequence of
combinatorics.
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Examples in massless case

Spectrum for arbitrary rank tensors

@ Since (Pk)AB are projection operators S;o — A is diagonalized and we have
n
(5128 = AGE = =A(Po) 5 + D [(k = N)(P)"s — (K + A)(P_4)"s] - (86)
k=1
@ Helicities for n rank tensor are
A =0, Ak =k, Ak = —k, k=(1,2,---,n). (87)

@ The eigenfunctions, which are our candidates for irreducible representations, for massless
tensors with arbitrary rank are

VA = (Pn) gWE.  (m=0,41,42,--- ,£n) (88)
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Examples in massless case

Fronsdal's action for highest helicity

@ Gauge transformation
Sha(k) = Zaa,QA (k). (89)

@ Fronsdal’s action for highest helicity

1
S(h) = 5 / o[ — 07 0sha -+ nDah* 0P s, + n(n — 1)a06h™ M e

n(n—1 . n(n—1)(n
+%85hbbAuachaaAij + %a hpPAik §b p? bAuk] ) (90)

@ For n =1 we obtain Maxwell action and
for n = 2 Einstein action in weak field approximation.
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Examples in massless case

Conclusion

@ The most important equations are the principle field equations, for both massive and
massless fields.

@ In the majority of known articles, only fields with highest helicity have been considered.
This case is particular case of present approach where there are the spectrum of all fields
with smaller helicities which have clear physical interpretation.

@ | introduced basic vectors so that helicity A is simple expression in terms of these vectors. In
fact we have A = ny — n_, where nt are number of basic vectors p3 .

@ The introduction of the projectors, is important because they diagonalize characteristic
polynomial enables us to solve corresponding determinants of arbitrary order and to find
spectrum of all helicities.
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Examples in massless case

Connection between Lorentz and local gauge symmetries.

From principle field equations follows that some physically important fields (like vector and
symmetric second rank tensor) transform under Lorentz transformations up to local gauge
transformations.

The principle field equations confirm Weinberg approach in a simpler way, using fields
instead creation and annihilation operators. In fact from principle field equations it is easier
to obtain actions, that are important in the process of quantization.

This presentation is based on articles
o Poincare field theory for massive particles . arXiv:2410.12549 [hep-th]
o Poincare field theory for massless particles . arxiv:2410.12969 [hep-th]
o Rarita-Schwinger equation from principle equation for all spins
arXiv:2412.20557 [hep-th]
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