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Jackiw-Rebbi vacuum gauge fields and strong CP violation

It is known that the vacuum state of the Yang Mills theory has a reach topological structure

topological effect appeared due to the presence of gauge field configurations that cannot be

continuously joined with the identity transformation
Jackiw, Rebbi, 't Hooft, Callan, Dashen, Gross

1976

Vacuum Periodicity in a Yang-Mills Quantum Theory

—

These flat field configurations A, (Z) have zero potential energies are of the form
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For gauge functions U w takes on integer values.



Jackiw-Rebbi vacuum gauge fields and strong CP violation
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A, (Z) = (5 — @)A1 (Z) when « is continuously varying from —: to
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Figure 1: The graph shows the shape of the potential barrier between the Chern-Pontryagin
vacua. As « increases, the hight of the barrier increases and reaches its maximum at o = 0,

then it symmetrically decreases until o = %, where it again is equal to € = 0.



Jackiw-Rebbi QCD vacuum gauge fields and strong CP violation

The values of the gauge field although gauge equivalent to g(a:) = (, are not removed from

the integration over the field configurations by gauge fixing procedure because they belong to

different topological classes and are separated by potential barriers.

A(z) =0 gl(f) A)n(f)
< » instanton tunnelling transitions between degenerate zero energy vacua

6A*(1 — 4a?)
g2(r? 4+ A2)4
In the quantum theory tunnelling will occur across this barrier and the

quantum-mechanical superposition \Ifg(%f) = > emewn(g) represents the Yang Mills 6 vac-

1
e(r,a) = ZG%G% = (5.51)

uum state The induced Chern-Pontryagin 6-angle term is Lorentz invariant, but

breaks the CP invariants, so that the distinct 6 vacuum states correspond to distinct theories



New exact solution of the sourceless Yang Mills equation
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non-perturbative magnetic sheet of a finite thickness 2/|al,

in the direction transversal to the sheet | the Poynting vector vanishes, Eax He = ().



Conserved current

Jo = gec AP G¢, on the solutions of the Yang Mills equation VZbGZ,,:_Q-

The non-vanishing components are:

b’ 3by b
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Chromo-magnetic Fluxes
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The magnetic flux W(L) = QTTP exp (zg]{ Aydz”) = cos (5 g <I>>
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is equal to ® = 4?77 when a closed loop L is surrounding any oriented magnetic flux tube

This solution is similar to the superposition of the Nielsen-Olesen magnetic flux tubes




Exact hyperbolic solution of the sourceless Yang Mills equation
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How large is the class of covariantly constant vacuum gauge fields

how large is the class of covariantly constant gauge fields defined by the equation

vab Gb L O Savvidy, Duff, Brown, Ramon-Medrano
P HY ' 1977

VZbGZV = 0. By taking covariant derivative V§*  [Va, Vp]abew = 0.

Gy, G = 0.

the field strength tensor factorises into the product of Lorentz tensor G, (x) and colour unit vector n(x),

G () = G (2)n(2).

The solution has the following form




Consider the Ansatz

1
Al = B,n" + —5abcnbaunc,
g
nn® =1, n*9,n* = 0. Cho, Faddeev, Niemi

ab_. b a abc Ab ¢
Vin' =on" —ge"™An" =0,

and therefore [V, V,]%n’ = 0. V... V,]%nb = _ggaCbeu/nb _0.
It follows that the field strength tensor factorises

Glw = (B + SW) n’,

where

F,, = 0,B, —0,B,, S, = e™n*9,no,n°.

;ap( w T gS,LW) —



General solution

1

Al = By (x)n®(z) + gsabcnb(x)ﬁunc(az).
1
b, = 5 pv-Ly
a/ =\ __ . Y . . Y
n®(Z) = {sin f(X) cos <f’(X) sin(f(X)))’ sin(f(X)) sin <f'(X) sin(f(X)))’ cos(f(X))}.
X = a1x + asy + asz + apt, Y = bix+byy+b3z+bot,

The equation defines the general solution which depends on an arbitrary function f(X)

Our aim is to describe the moduli space of the covariantly constant gauge fields defined by the

equations and investigate their physical properties.



Properties of General solution

The square of the field strength tensor is

1 a, b
_Ga Ga :_FVFI/ | H— pv=v |
4 U 4 Qv = g 2g2

where a, and b, are arbitrary constant Lorentz vectors

The magnetic energy density can be represented in the following form:
H - (@xb)+

Let us consider the solution when B, = F),, = 0, so that

a 1abcb C — 7\ 2
AM:§8 n’o,n’, 622—gz(a><b).



Properties of General solution

Let us considering the vectors a, = (0,a,0,0) and b, = (0,0,0,0), so that 8(x) = f(ax),
o(z,y) = by/f (ax)sin f(ax). The gauge field will take the following form:
( (0,0,0)
(byCOS s(f, Z?nf) — f sin(f Smf) + byf,2 cos(f) cos(f, Ziynf),
bysclff ' (f )+f COS(f )+byf,2 cos( f) sin(f,:iynf),
~by(cos(f) + L sin(f))

%( — cos(f) Cos(f,Z?nf), — cos( f) sin(f,l;?nf), sin f),
(0,0,0)

1
A%(x,y) = — <
(z,y) p

\

where the derivatives are over the whole argument axr. One can verify explicitly that it is a

solution of the Yang Mills equation.

the energy density of the chromomagnetic field is a space time constant
272
a“b

1 a a



Properties of General solution

The non-vanishing components of the conserved current Ji = = getbc AY GC

oooab’ /. by by |
= W(Sm(sinf)’_COS(sinf)’())’

1

Jy = gb (f cos f Cos(silff) - by cot fSin(S;yf) T byf,2 (Sil;zf))’
J5 = gb (f cos f sin(si[ff) — by cot f COS(siI])ayf) - by% COS(S:;yf))
J3 = ——bf' sin f.

Dy = 0, J¢ + 8,8 = 0

°This current is conserved on the solutions of the Yang Mills equation Vzb G/bw = 0.



Properties of particular solution

Considering 0(X) = arcsin(\/l — (a-z)?)

“chromomagnetic flux sheet” solution

n®(x

):{\/1—(&'33)2(308([?'1’), \/1—(a-:1:)281n(b-x), (a-x)},

where @ = (a,0,0), b = (0,b,0).

which represents a non-perturbative magnetic sheet of a finite thickness 2/|al,

and the corresponding gauge field has the following form:

( (0,0,0)
sin by _____cosby 2
a(¢ 1=(az)?’  /1-(a2)?’ O) (az)” <1

b\/l — (aa:)2< — ax cos by, —ax sin by, \/1 — (ax)?

(0,0,0)
(ax)® > 1,



Comparison with the 't Hooft Polyakov monopole solution

The electromagnetic field strength is defined by 't Hooft as

1 1 a
G = n"“wa - —eabcnavunbvync =0,A, —0,A, + —eabcnaﬁunbﬁync, n® = gb_’ (1.1)
g g fal
where V,n* = 0,n* — ge“bCAZnC, A, = Ajn® and n® is a unit colour vector. It reduces

to G = 0,A) — 0,A3 in the space regions where the scalar field is in the third direction

ne = (0,0,1) and the Abelian field A, does not have Dirac string singularities.

the expression of the topologically conserved current is

1 1
KM = §€M,/)\pa,/G)\p — %eumpeabcﬁyn“@nbﬁpnc , a,uK,u = 0.

The 't Hoott-Polyakov solution has the following form:

¢* =u(r)n®, A = e“ijnja(r)

and has the following asymptotic properties



Comparison with the 't Hooft Polyakov monopole solution

The scalar field ¢* vanishes at x* = 0 and the corresponding topological density K((x) vanishes
everywhere expect for £ = 0 where it has singularity Ky = 4?”53(3_:’), which contributes to the

topological charge and is equal to the winding number of the map n®(x):

1 47
= dBZCK _ dzO'Z'EZ" Eabcnaa.nba nt —
? RS Y29 Jee Ih Ik g

induces a magnetic flux of a single monopole:

X

H; =

4
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Properties of General solution - Magnetic Fluxes




[Landscape of Yang Mills theory vacuum
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where w_ = w(:—a) and wy = w(z+a).



[Landscape of Yang Mills theory vacuum

&(r, a)

— £(x,-0.5) — £(r,-0.5)
£(x,-0.4) £(r,-0.4)
£(x,—0.3) £(r,-0.3)
— £(x,-0.2) — £(r,-0.2)
— £(x,-0.1) — g(r,-0.1)
— &(x,0) — £(r,0)
~10 5 5 10 . 1 2 3 2
Figure 4: The lLh.s. graph shows the shape of the barrier e(z, a) when o parameter
. . 1 L 1 . . .
changes in the interval |—3,0]. At a = —3 the energy density is equal to e = 1/2

(a =b =g =1). As a increases, the hight of the barrier increases and reaches its maximum
at a = 0, then it symmetrically decreases until a = %, where it again is equal to e = 1/2. The

r.h.s graph shows the shape of the potential barrier ~  between the Chern-Pontryagin vacua
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Chern-Pontryagin ©-angle and breaking the CP invariants

g(r, Q)

6% (1 — 4a?)
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In the quantum theory tunnelling will occur across this barrier and the

1 a a
e(r,a) = 7 GGy = (5.51)
quantum-mechanical superposition Ug(A) = ¥, 1), (A) represents the Yang Mills 6 vac-

uum state The induced Chern-Pontryagin 6-angle term is Lorentz invariant, but

breaks the CP invariants, so that the distinct 8 vacuum states correspond to distinct theories



Properties of General solution nonzero H

The square of the field strength tensor is

1 a, b
_Ga Ga :_FZ/FI/ | H— pv=v |
4 U 4 Qv = g 292

where a, and b, are arbitrary constant Lorentz vectors

The magnetic energy density can be represented in the following form:

1

H- (@ xb)+
(@ 0)+ 2¢2 T2

T 2 B2
o (gH —axb)”.

The minimum of € is realised when

—

gﬁvac =a X ga E(gHvac) =0



Properties of General solution nonzero H

When the Abelian part B,n® of the gauge potential is also present then the potential barrier

will take the following form

a’b 9 3 N gH
e(H,x,y,a) = 324 ((12 — 8a + 16a” 4+ 32a” — 8(1 + 4« )E )(1 — E) +
gH ) ) (1—4a0%)* (1- 4052)292H2y2)
+2(1 — 40°)((2% — 3)* — 4 4 |
( ) ab ) a”) cos f(az) sin? f(ax) i fi(ax)?

At H = 0 it reduces to the previous expression €(H = 0, x,y, o) = €(x, )

At a = +1/2 we have

1
e(H,x,y,+1/2) = 2—92(gH — ab)®.

At the minimum ¢H,,;, = ab the initial and final configurations o = 4+1/2 have magnetic

energy density equal to zero

e(Hnin, x,y,£1/2) = 0.



Potential barriers between vacuum solutions

1 1
A = —§Fz-jxjn“ + gsabcnb@-nc, Ag = O,

1

(gH — @ x b)?
22 '

1 a a

the zero energy density € is realised when

gHvac = a X 3 E(gH’UaC) =0
, L=
Agﬁzc_ixg = —-U"VU
g
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A possible tunnelling transition between supertluxon flat configurations

and the flat

Jackiw-Rabbi configurations will wash out the CP violating © angle to zero

dynamically restoring CP symmetry

-10 -5 5 10

We do not know yet whether there exist the instanton-like transitions that would induce

a tunnelling between vacuum configurations with nonzero Pontryagin index

"superfluxon” vacuum configurations

-

and the

A possible tunnelling transition between

superfluxon flat configurations and the flat configurations with non-vanishing Chern-Pontryagin

index will wash out the CP violating 6 angle to zero, dynamically restoring CP symmetry:.

S——



[Landscape of Yang Mills theory vacuum

The existence of an even larger class of covariantly constant gauge fields described above
pointed out to the fact that the Yang-Mills vacuum has even higher degeneracy of vacuum field
configutations. Each covariantly constant gauge field configuration on its own contains a rich
diversity of emergent nonperturbative structures, and it is a challenging problem to investi-
gate possible tunneling transitions between these highly degenerate states and to calculate the

vacuum polarisation induced by the new class of covariantly constant gauge fields.



Landscape of QCD Vacuum
RIEMANNIAN GEOMETRY & TENSOR CALCULUS

Tensor calculations in the Riemannian Geometry and General Relativity - EDCRGTC

This package was developed by the late colleague and friend Dr. Sotirios Bonanos.
The package can be downloaded here: http://www.inp.demokritos.gr/~sbonano/

in[-]1:= << EDCRGTCcode.m

ml-1:- fla_y,b_, c_] :=Signature[{a, b, c}];
fabc = Table[f[a, b, c], {a, 1, 3}, {b, 1, 3}, {c, 1, 3}];

The unit colour vector n

b2y ]
f’[al x] Sin[f[ al x]]
b2y

In[~]:= N $= {Sin[f[ al x]] Cos[

Sin[f[alx]]Sin[ ],Cos{f[aIX]]};

f’[al x] Sin[f[al x]]



1
AO = — FullSimplify[

g
Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], n0], {2, 3}11] ;

1
Al = — FullSimplify[
g

Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], nl1], {2, 3}11] ;

1
— FullSimplify[

A2 =
g
Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], n2], {2, 3}]1;
1
A3 = — FullSimplify[
g

Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], N3], {2, 3}]1] ;

F12 = FullSimplify[D[A2, x] -D[Al, y] -

g Contract[Outer[Times, Contract[Outer[Times, fabc, Al1], {2, 4}], A2], {2, 3}]]
F13 = FullSimplify[D[A3, x] -D[Al, z] -

g Contract[Outer [Times, Contract[Outer[Times, fabc, Al1], {2, 4}], A3], {2, 3}]]
F23 = FullSimplify[D[A3, y] -D[A2, z] -

g Contract[Outer[Times, Contract[Outer[Times, fabc, A2], {2, 4}], A3], {2, 3}]]
FO1 = D[Al1l, t] -D[AO, X];
FO2 = D[A2, t] -D[AO, y];
FO3 = D[A3, t] -D[AO, X];

1
£ = 2 FullSimplify[F12.F12 + F13.F13 + F23.F23]
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Yang Mills equation

inf-]-= FullSimplify[ D[F12, x ] - gContract]|
Outer[Times, Contract[Outer[Times, fabc, Al], {2, 4}], F12], {2, 3}] ]

FullSimplify[ D[F13, x ] - gContract]|
Outer[Times, Contract[Outer[Times, fabc, Al], {2, 4}], F13], {2, 3}] ]

FullSimplify[ D[F23, x] - gContract]|
Outer [Times, Contract[Outer[Times, fabc, Al], {2, 4}], F23], {2, 3}] ]

t[e]=
{0, 0, 0}

t[e]=
{0, 0, 0}

tle]=
{0, 0, 0}



The potential barrier between Aand A’ fields

-1 .
in[-1:= KO = AOwW|— -a] 3
.2 o
-1 - 1
Kl1=Alw|[=- -« +w[—+a] L1;
-2 - 2
-1 - 1
K2 =A2w|[=- -« +w[— +a] L2 ;
-2 - 2
-1 - 1
K3=A3w[- -a +w[—+a] L3 ;
-2 - 2
in[-1:- K12 = FullSimplify[D[K2, x] -D[K1, y] - g Contract|
Outer[Times, Contract[Outer[Times, fabc, K1], {2, 4}], K2], {2, 3}]1] ;
K13 = FullSimplify[D[K3, x] -D[K1, z] - g Contract]
Outer[Times, Contract[Outer[Times, fabc, K1], {2, 4}], K31, {2, 3}]1] ;
K23 = FullSimplify[D[K3, y] -D[K2, z] - g Contract]
Outer[Times, Contract[Outer[Times, fabc, K2], {2, 4}], K31, {2, 3}]1] ;
KOl = FullSimplify[D[K1l, t] -D[K@, x] - g Contract]

Outer [Times, Contract[Outer[Times, fabc, KO], {2, 4}], K1], {2, 3}1];
K02 = D[K2, t] -D[KO, y] -
g Contract[Outer [Times, Contract [Outer[Times, fabc, KO], {2, 4}], K2], {2, 3}] ;
K03 = D[K3, t] -D[KO, x] -
g Contract[Outer [Times, Contract [Outer[Times, fabc, KO], {2, 4}], K31, {2, 3}];

— 2 FullSimplify[K12.K12 + K13.K13 +K23.K23]
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Happy birthday dear Brako !



