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Jackiw-Rebbi vacuum gauge fields and strong CP violation  

Figure 1: The graph shows the shape of the potential barrier (2.43) between the Chern-
Pontryagin vacua (1.1). As – increases, the hight of the barrier increases and reaches its
maximum at – = 0, then it symmetrically decreases until – = 1

2 , where it again is equal to
‘ = 1/2.

1 Introduction

Covariantly constant gauge fields are solutions of the sourceless Yang-Mills equation and repre-
sent classical vacuum fields [1, 2, 3, 4, 5]. We found that the moduli space of covariantly constant
gauge fields is infinite-dimensional. The solutions represent non-perturbative chromomagnetic
flux tubes (vortices) similar in their form to superposed Nielsen-Olesen chromomagnetic vor-
tices [6] uniformly distributed over the whole space [7, 8]. These gauge field configurations
are stretched along the potential valleys of a constant energy density and are separated by
potential barriers between classically degenerate vacua that are forming a complicated poten-
tial landscape of the QCD vacuum. It is suggested that the solutions describe the condensate
of chromomagnetic vortices of opposite magnetic charges and represent a dual analog of the
Cooper pairs condensate in a superconductor. This consideration leads to a description of the
vacuum state of a Yang-Mills theory as having richer topological structure than previously
thought.

It is known that the vacuum state of the Yang Mills theory has a reach topological structure
and as a result the quantised gauge theory is specified by a gauge group and a ◊-angle [9, 10,
11, 12]. The additional Chern-Pontryagin ◊-angle term is Lorentz invariant, but breaks the CP
invariants so that the distinct ◊ vacuum states correspond to distinct theories [9, 10, 12]. This
topological e�ect appeared due to the presence of gauge field configurations that cannot be
continuously joined with the identity transformation [11]. These flat field configurations Ąn(x̨)
defined in [9, 10]:

Ąn(x̨) = i

g
U

≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
≠ 2i⁄‡̨x̨

x̨2 + ⁄2 , Un = U
n

1 . (1.1)

have zero potential energies. The values of the gauge field (1.1), although gauge equivalent to
Ą(x) = 0, are not removed from the integration over the field configurations by gauge fixing
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G
a

ij
(Ąn) = 0, ‘(Ąn) = 1

4G
a

ij
G

a

ij
= 0 (1.2)

The values of the gauge field although gauge equivalent to Ą(x) = 0, are not removed from
the integration over the field configurations by gauge fixing procedure because they belong to
di�erent topological classes and are separated by potential barriers.
(1.3) shown in Fig.1 [9, 10, 12]. The appearance of potential barriers between these zero
energy troughs can be observed by calculating the magnetic energy of the field configuration
Ą

Õ
1 (x̨) = (1

2 ≠ –)Ą1(x̨) when – is continuously varying from ≠
1
2 to 1

2 . This path connects two
minima Ą(x) = 0 and Ą1(x) of the magnetic energy density through the potential barrier of
the shape

‘(r, –) = 1
4G

a

ij
G

a

ij
= 6⁄

4(1 ≠ 4–
2)

g2(r2 + ⁄2)4 (1.3)
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shown in Fig.1. In the quantum theory tunneling will occur across this barrier. These
instanton tunnelling transitions between degenerate zero energy vacua mean that the cor-
responding states Ân(Ą) and Ân+1(Ą) are in a quantum-mechanical superposition �◊(Ą) =
q

n e
in◊

Ân(Ą) representing the ◊ vacuum state [9, 10, 12]. Thus the quantal description of the
vacuum state cannot be limited to fluctuations around any definite classical configuration of
zero energy (1.1).

The other aspect of topological phenomenon inherent to Yang Mills theory is the existence
of ’t Hooft-Polyakov monopole solution in SU(2) gauge field theory which is spontaneously
broken by the adjoint scalar field „a, a = 1, 2, 3 that has nonzero vacuum expectation value v

[13, 14, 15, 16, 17, 18, 19]. The charged bosons W
±

µ
get nonzero masses, while the neutral field

A
3
µ

remains massless. The electromagnetic field strength is defined by ’t Hooft as [13]

Gµ‹ = n
a
G

a

µ‹
+ 1

g
‘

abc
n

a
Òµn

b
Ò‹n

c
© ˆµA‹ ≠ ˆ‹Aµ + 1

g
‘

abc
n

a
ˆµn

b
ˆ‹n

c
, n

a = „
a

|„|
, (1.3)

where Òµn
a = ˆµn

a
≠ g‘

abc
A

b

µ
n

c, Aµ = A
a

µ
n

a and n
a is a unit colour vector. It reduces

to Gµ‹ = ˆµA
3
‹

≠ ˆ‹A
3
µ

in the space regions where the scalar field is in the third direction
na = (0, 0, 1) and the Abelian field Aµ does not have Dirac string singularities. The definition
(1.3) satisfies the Maxwell equations, except for the spacetime points where „a(x) = 0. A
location of zero value of the scalar field is a solution of the equations „1(x) = „2(x) = „3(x) = 0
that are defining a point in three dimensional space. The appearance of zero value of the scalar
field indicates the existence and the location of a monopole in this theory. This conclusion
follows from the expression of the topologically conserved current is

Kµ = 1
2‘µ‹⁄flˆ‹G⁄fl = 1

2g
‘µ‹⁄fl‘

abc
ˆ‹n

a
ˆ⁄n

b
ˆfln

c
, ˆµKµ = 0. (1.4)

The ’t Hooft-Polyakov solution has the following form:

„
a = u(r)na

, A
a

i
= ‘

aij
n

j
a(r)

and has the following asymptotic properties

u(0) = 0, a(0) = 0, u(r) æ
ræŒ

µ

⁄
, a(r) æ

ræŒ
≠

1
gr

2
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Figure 1: The graph shows the shape of the potential barrier between the Chern-Pontryagin
vacua. As – increases, the hight of the barrier increases and reaches its maximum at – = 0,
then it symmetrically decreases until – = 1
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Ąn(x̨) = i

g
U

≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
≠ 2i⁄‡̨x̨

x̨2 + ⁄2 , Un = U
n

1 . (1.1)

The values of the gauge field although gauge equivalent to Ą(x) = 0, are not removed from
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the integration over the field configurations by gauge fixing procedure because they belong to
di�erent topological classes and are separated by potential barriers.
(1.2) shown in Fig.1 [9, 10, 12]. The appearance of potential barriers between these zero
energy troughs can be observed by calculating the magnetic energy of the field configuration
Ą
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Figure 1: The graph shows the shape of the potential barrier (2.43) between the Chern-
Pontryagin vacua (1.1). As – increases, the hight of the barrier increases and reaches its
maximum at – = 0, then it symmetrically decreases until – = 1

2 , where it again is equal to
‘ = 1/2.

instanton tunnelling transitions between degenerate zero energy vacua mean that the cor-
responding states Ân(Ą) and Ân+1(Ą) are in a quantum-mechanical superposition �◊(Ą) =
q

n e
in◊

Ân(Ą) representing the ◊ vacuum state [9, 10, 12]. Thus the quantal description of the
vacuum state cannot be limited to fluctuations around any definite classical configuration of
zero energy (1.1).

The other aspect of topological phenomenon inherent to Yang Mills theory is the existence
of ’t Hooft-Polyakov monopole solution in SU(2) gauge field theory which is spontaneously
broken by the adjoint scalar field „a, a = 1, 2, 3 that has nonzero vacuum expectation value v

[13, 14, 15, 16, 17, 18, 19]. The charged bosons W
±

µ
get nonzero masses, while the neutral field

A
3
µ

remains massless. The electromagnetic field strength is defined by ’t Hooft as [13]

Gµ‹ = n
a
G

a

µ‹
+ 1

g
‘

abc
n

a
Òµn

b
Ò‹n

c
© ˆµA‹ ≠ ˆ‹Aµ + 1

g
‘

abc
n

a
ˆµn

b
ˆ‹n

c
, n

a = „
a

|„|
, (1.3)

where Òµn
a = ˆµn

a
≠ g‘

abc
A

b

µ
n

c, Aµ = A
a

µ
n

a and n
a is a unit colour vector. It reduces

to Gµ‹ = ˆµA
3
‹

≠ ˆ‹A
3
µ

in the space regions where the scalar field is in the third direction
na = (0, 0, 1) and the Abelian field Aµ does not have Dirac string singularities. The definition
(1.3) satisfies the Maxwell equations, except for the spacetime points where „a(x) = 0. A
location of zero value of the scalar field is a solution of the equations „1(x) = „2(x) = „3(x) = 0
that are defining a point in three dimensional space. The appearance of zero value of the scalar
field indicates the existence and the location of a monopole in this theory. This conclusion
follows from the expression of the topologically conserved current is

Kµ = 1
2‘µ‹⁄flˆ‹G⁄fl = 1

2g
‘µ‹⁄fl‘

abc
ˆ‹n

a
ˆ⁄n

b
ˆfln

c
, ˆµKµ = 0. (1.4)

The ’t Hooft-Polyakov solution has the following form:

„
a = u(r)na

, A
a

i
= ‘

aij
n

j
a(r)

2

Jackiw-Rebbi QCD vacuum gauge fields and strong CP violation 

The CP violating topological e�ect appeared due to the presence of vacuum gauge field
configurations that have non-vanishing Chern-Pontryagin index [65, 62, 63, 64]:

Ąn(x̨) = ≠
i

g
U

≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
≠ 2i⁄‡̨x̨

x̨2 + ⁄2 , Un = U
n

1 . (5.50)

The values of the gauge field (5.50), although gauge equivalent to Ą(x) = 0, are not removed
from the integration over the field configurations by gauge fixing procedure because they belong
to di�erent topological classes and are separated by potential barriers [65, 62, 63, 64]. The
potential barriers can be calculated between these field configurations considering Ą

Õ
1 (x̨) =

(1
2 ≠ –)Ą1(x̨) when – is continuously varying from ≠

1
2 to 1

2 . The potential barrier has the
following shape

‘(r, –) = 1
4G

a

ij
G

a

ij
= 6⁄

4(1 ≠ 4–
2)

g2(r2 + ⁄2)4 (5.51)

shown in Fig.4. In the quantum theory tunnelling will occur across this barrier and the
quantum-mechanical superposition �◊(Ą) = q

n e
in◊

Ân(Ą) represents the Yang Mills ◊ vac-
uum state [62, 63]. The induced Chern-Pontryagin ◊-angle term is Lorentz invariant, but
breaks the CP invariants, so that the distinct ◊ vacuum states correspond to distinct theories
[65, 62, 63, 64].

We do not know yet whether there exist the instanton-like transitions that would induce
a tunnelling between vacuum configurations with nonzero Pontryagin index (5.50) and the
”superfluxon” vacuum configurations (5.45), (5.46). A possible tunnelling transition between
superfluxon flat configurations and the flat configurations with non-vanishing Chern-Pontryagin
index (5.50 ) will wash out the CP violating ◊ angle to zero, dynamically restoring CP symmetry.

6 Vacuum polarisation
The existence of an even larger class of covariantly constant gauge field configurations pointed
out to the fact that the Yang-Mills vacuum has even larger degeneracy of vacuum field config-
urations11. It is a challenging problem to investigate the vacuum polarisation induced by the
new class of covariantly constant gauge fields. The early investigation revealed that the e�ec-
tive Lagrangian of the SU(N) Yang-Mills theory has the following gauge and Lorentz invariant
form:

L = ≠F ≠
11N

96fi2 g
2
F

3
ln 2g

2
F

µ4 ≠ 1
4

, (6.52)

11
The Ising spin system that has an exponential degeneracy of its vacuum configurations was discovered in

[66]. Here the parallel planes of di�erently oriented spin configurations represent the degenerate vacuum spin

configurations which are separated by potential barriers [67]. The total number of such vacuum configurations

is 3 ◊ 2
N

or 2
3N

if k = 0 [67, 68, 69, 70, 71, 72]. In recent publications this symmetry was referred to as the

subsystem symmetry, and it has exotic fracton excitations [73, 74, 75].
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2 Sourceless gauge fields

The covariantly constant gauge fields are defined by the equation [26, 27, 28, 29, 30]

Ò
ab
fl G

b
µ‹ = 0, (2.6)

where G
a
µ‹ = ˆµA

a
‹ ≠ ˆ‹A

a
µ ≠ gÁ

abc
A

b
µA

c
‹ , Ò

ab
µ (A) = ”

ab
ˆµ ≠ gÁ

acb
A

c
µ, and are the solutions of the

sourceless Yang-Mills equation Ò
ab
µ G

b
µ‹ = 0 as well4. By taking the covariant derivative Ò

ca
⁄ of

the l.h.s (2.6) and by interchanging the derivatives one can get [G⁄fl, Gµ‹ ] = 0, which means
that the field strength tensor factorises into the product of the Lorentz tensor and the colour
unit vector in the direction of the Cartan’s sub-algebra:

G
a
µ‹(x) = Gµ‹(x)na(x). (2.7)

Both fields can depend on the space-time coordinates. The well known solution of (2.6) has
the following form [26, 27, 28, 29, 30]:

A
a
µ = ≠

1
2Fµ‹x‹n

a
, (2.8)

where Fµ‹ and n
a are space-time independent parameters, n

a
n

a = 1. It is convenient to call
this solution the ”constant chromomagnetic field” 5 because n

a is a constant colour vector. The
general solutions of the equation (2.6) were found recently in [2, 3, 4]. It appears that the
moduli space of covariantly constant gauge fields has large dimensionality and is much larger
than the moduli space of the constant chromomagnetic fields defined by the equation (2.8).
The new solutions can be obtained through the nontrivial space-time dependence of the unit
vector n

a(x) [2, 3, 4]. Considering the Ansatz [32, 33, 34, 6, 35, 36, 2, 3, 4]

A
a
µ = Bµn

a + 1
g

Á
abc

n
b
ˆµn

c
, (2.9)

where Bµ(x) is the Abelian Lorentz vector and n
a(x) is a space-time dependent colour unit

vector n
a
n

a = 1, n
a
ˆµn

a = 0, one can observe that the field strength tensor factorises [32, 33]:

G
a
µ‹ = (Fµ‹ + 1

g
Sµ‹) n

a
© Gµ‹ n

a
, (2.10)

where
Fµ‹ = ˆµB‹ ≠ ˆ‹Bµ, Sµ‹ = Á

abc
n

a
ˆµn

b
ˆ‹n

c
. (2.11)

4
The e�ective Lagrangian is gauge invariant only on sourceless-vacuum fields [26, 31].

5
The constant solutions have six parameters Fµ‹ , four translations x‹ æ x‹ + x0‹ and two parameters na

in

the case of the SU(2) group.

4

of the field strength tensor G
a
µ‹ is of the following form:

G
a
12(x) = ab

g
n

a(x, y), (2.20)

G
a
µ‹(x, y) = 1

g

Y
_____]

_____[

(0, 0, 0)
ab
g

3
Ô

1 ≠ a2x2 cos(by),
Ô

1 ≠ a2x2 sin(by), ≠ax

4
,

(0, 0, 0),
(0, 0, 0)

, (2.21)

G12 =
I

Hy

Ô

1 ≠ a2x2 cos(by) ≠
a sin(by)

g
Ô

1 ≠ a2x2 ,
a cos(by)

g
Ô

1 ≠ a2x2 + Hy

Ô

1 ≠ a2x2 sin(by), ≠aHxy

J

G13 =
I

abx
Ô

1 ≠ a2x2 cos(by)
g

,
abx

Ô
1 ≠ a2x2 sin(by)

g
,
b ≠ a2bx

2

g

J

G
a
12 = ˆxA2 = ab

g

ÓÔ

1 ≠ a2x2 cos(by),
Ô

1 ≠ a2x2 sin(by), ≠ax

Ô
(2.22)

and the energy density of the chromomagnetic field is without singularities and is a space-time
constant:

‘ = 1
4G

a
ijG

a
ij = a

2
b

2

2g2 . (2.23)

The non-vanishing components of the conserved current J
a
µ = g‘

abc
A

b
‹G

c
‹µ are6

J
a
1 = ab

2

gf
Õ

3
sin( by

f
Õ sin f

), ≠ cos( by

f
Õ sin f

), 0
4

; (2.24)

J
1
2 = a

2
b

g

3
f

Õ cos f cos( by

f
Õ sin f

) + by cot f sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 sin( by

f
Õ sin f

)
4

,

J
2
2 = a

2
b

g

3
f

Õ cos f sin( by

f
Õ sin f

) ≠ by cot f cos( by

f
Õ sin f

) ≠ by
f

ÕÕ

f
Õ2 cos( by

f
Õ sin f

)
4

,

J
3
2 = ≠

a
2
b

g
f

Õ sin f. (2.25)

One can check that ˆµJ
a
µ = ˆxJ

a
1 + ˆyJ

a
2 = 0. Despite the fact that the first term ˆµG

a
µ‹ in the

Yang Mills equation is in general singular it appears that the second term g‘
abc

A
b
‹G

c
‹µ also has

singularities which compensate each other, and the equation is fulfilled in the vicinity of the
singular planes.

We conclude that the moduli space of covariantly constant gauge fields has large dimen-

sionality and is much larger than the moduli space of constant chromomagnetic field (2.8). In
comparison, the moduli space Ik,N of the YM self-duality equation in the Euclidean space [8]
has the dimension dimIk,N = 4kN in a given winding sector k for the SU(N) group [37, 38].
Our aim is to describe the moduli space of the covariantly constant gauge fields defined by the
equations (2.6), (2.9), (2.17) and (2.21) and investigate their physical properties.

6
This current is conserved on the solutions of the Yang Mills equation Ò

ab
µ Gb

µ‹ = 0.

7

Figure 2: The figure shows mapping (3.28) n
a(x, y) = {

Ô
1 ≠ x2 cos(y),

Ô
1 ≠ x2 sin(y), x} of a

cylinder sell C
2
0 on the plane (x, y) to the sphere S

2
0 . The mapping of the cylinder boundaries

x = ±1 to the north and south poles is given by the formula n
a(±1, y) = (0, 0, ±1), where

y œ [0, 2fi]. The lines L1,2 are identified on a sphere due to the formula n
a(x, 0) = n

a(x, 2fi) =
(
Ô

1 ≠ x2, 0, x), where x œ [≠1, 1]. Each sell C
2
k defines a magnetic vortex of a positive magnetic

charge (3.35).

sponding gauge field (2.9) at Bµ = 0 has the following form:

A
a
µ = 1

g

Y
_______]

_______[

(0, 0, 0)
a

3
sin byÔ
1≠(ax)2 , ≠

cos byÔ
1≠(ax)2 , 0

4
(ax)2

< 1

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

4

(0, 0, 0)

(3.29)

A
a
µ = 0, (ax)2

Ø 1,

where aµ = (a, 0, 0, 0), b‹ = (0, b, 0, 0). The location of the singular planes defined by the
equation (2.18) is at ax = ±1. There is no energy flow from the magnetic sheet in the direction
transversal to the sheet because the Poynting vector vanishes, Ęa ◊ H̨a = 0. This solution is
similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
presence of any Higgs field (see Fig.1). This is because the magnetic flux that is defined by the
equation [12, 13]

A(L) = 1
2TrP exp (i

j

L
Akdx

k) = sin(�B) (3.30)

is equal to �B = 2fi
g when a closed loop L is surrounding any oriented magnetic flux tube of

the square area 2
a

fi
b in the (x, y) plane of the solution (3.29) (see Fig.1). It will be convenient

to call the solutions (3.29 ) and (2.17) ”superfluxons” as an abbreviation for ”superposition of
fluxes”.

When ◊(X) = arcsin( 1
cosh(a·x)), we will obtain ”hyperbolic” solution, which has infinite width
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Field strength

Chromo-magnetic energy

x

y

z

Figure 1: The figure demonstrates a finite part of an infinite sheet of finite thickness 2
a

in the
direction of the x axis of the solution (2.24). It is filled by parallel chromomagnetic flux tubes.
Each tube of the square area 2

a

fi

b
carries the magnetic flux 4fi

g
. The circuits show the flow of the

conserved current J
a

k
= g‘

abc
A

b

j
G

c

ik
and the arrows show the flow of the vorticity Ê

a

i
= ‘ijkˆjJ

a

k
.

moduli space of the solutions. The singularities are located on the planes Xs, where the
sin ◊(X) or ◊(Xs)

Õ vanishe:

◊(Xs) = 2fiN, N = 0, ±1, ±2...., or ◊(Xs)
Õ = 0 (2.18)

and cos / sin
3

Y

◊(X)Õ sin ◊(X)

4
are fast oscillating trigonometric functions4. Our aim is to describe

the moduli space of the covariantly constant gauge fields defined by the equations (2.5), (2.8)
and (2.17) and investigate their physical properties.

The general solution (2.17) for the vector potential A
a

µ
(2.8) depends on two coordinates

X and Y . There are two subclasses of physically interesting solutions: the time independent
solutions a0 = b0 = 0 describing stationary magnetic fluxes distributed in 3d-space and time-
dependent solutions a0 ”= 0, b0 ”= 0 describing propagation of strings and branes. For the sake
of transparency and compactness of the subsequent formulas we will identify this plane with the
(x, y) plane. Thus we are considering the vectors aµ = (0, a, 0, 0) and b‹ = (0, 0, b, 0), so that
◊(x) = f(ax), „(x, y) = by/f

Õ(ax) sin f(ax). The gauge field (2.8) together with the Abelian
field B1 = Hy will take the following form:

A
a

i
(x, y) = 1

g

Y
___________]

___________[

a

3
by((gH
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≠ 1) sin f + 1

sin f
) cos( by

f
Õ sin f

) ≠ f
Õ sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos f cos( by

f
Õ sin f

),

by((gH

ab
≠ 1) sin f + 1

sin f
) sin( by

f
Õ sin f

) + f
Õ cos( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos f sin( by

f
Õ sin f

),

by((gH

ab
≠ 1) cos f ≠

f
ÕÕ

f
Õ2 sin f)

4

b

f
Õ

3
≠ cos f cos( by

f
Õ sin f

), ≠ cos f sin( by

f
Õ sin f

), sin f

4

(0, 0, 0),

,(2.19)

4
There is some analogy with the Schwarzschild solution in gravity, where the solution is asymptotically flat

and regular at infinity while it has metric singularity at the Schwarzschild radius rg = 2MG/c2
of the event

horizon. This metric singularity is not a physical one because the Riemann curvature tensor is regular at r = rg.

Here as well, we have singularities of the gauge field and of the field strength tensor while the energy density is

a regular function.

5

function ◊(X). Considering ◊(X) = arcsin(
Ò

1 ≠ (a · x)2) we are obtaining a ”chromomagnetic
flux sheet” solution [23, 24]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.23)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|, and the corre-
sponding gauge field (2.8) has the following form:

A
a

i
(x, y) = 1

g

Y
________]

________[

1Ô
1≠(ax)2

3
a sin by ≠ gHy(1 ≠ (ax)2) cos by,

≠a cos by ≠ gHy(1 ≠ (ax)2) sin by, ≠gHyax

Ò
1 ≠ (ax)2

4

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

4

(0, 0, 0), (ax)2
< 1

(2.24)

where ą = (a, 0, 0), b̨ = (0, b, 0) and A
a

µ
= 0 when (ax)2

Ø 1. The current vorticity Ê
a

i
= ‘ijkˆjJ

a

k

Ê
a

3 = 1
g

(ab ≠ gH)(a2 + b
2(1 ≠ a

2
x

2)2)
(1 ≠ (ax)2)3/2

3
cos by, sin by, 0

4
, (ax)2

< 1 (2.25)

is singular at the location of the vortices x = ±1/a. There is no energy flow from the magnetic
sheet in the direction transversal to the sheet because the Poynting vector vanishes, Ęa◊H̨a = 0.
This solution is similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is
supported without presence of any Higgs field (see Fig.1). The magnetic flux that is defined by
the equation7 [3, 4]

W (L) = 1
2TrP exp (ig

j

L

Akdx
k) = cos

31
2 g �

4
(2.26)

is equal to � = 4fi

g
when a closed loop L is surrounding any oriented magnetic flux tube of the

square area 2
a

fi

b
in the (x, y) plane of the solution (2.24) (see Fig.1). It will be convenient to call

the solutions (2.24 ) and (2.17) ”superfluxons” as an abbreviation of ”superposition of fluxes”.
When ◊(X) = arcsin( 1

cosh(a·x)), we will obtain ”hyperbolic” solution, which has infinite width
in the x direction compared with the finite width solution (2.23)

n
a(x) = {

cos((b · x) cosh2(a · x))
cosh(a · x) ,

sin((b · x) cosh2(a · x))
cosh(a · x) , tanh(a · x)}. (2.27)

Finally, when ◊(X) = (a · x), we will obtain a ”trigonometric” solution

n
a(x̨) = {sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)}. (2.28)

7
The W (L) is a character of the SU(2) representations ‰j =

sin(j+1/2)�
sin(�/2) and for j = 1/2 is ‰1/2 = 2 cos(�/2).
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3
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Ò
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4

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

4

(0, 0, 0), (ax)2
< 1

(2.24)
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of the field strength tensor G
a
µ‹ is of the following form:

G
a
12(x) = ab

g
n

a(x, y), (2.20)

G
a
µ‹(x, y) = ab

g

Y
_____]

_____[

(0, 0, 0),3
sin(by cosh2(ax))

cosh(ax) ,
cos(by cosh2(ax))

cosh(ax) ,
sin(ax)

cosh(ax)

4
,

(0, 0, 0),
(0, 0, 0)

, (2.21)

G
a
µ‹(x, y) = ab

g

Y
_____]

_____[

(0, 0, 0)3
Ô

1 ≠ a2x2 cos(by),
Ô

1 ≠ a2x2 sin(by), ≠ax

4
,

(0, 0, 0),
(0, 0, 0)

, (2.22)

G12 =
I

Hy

Ô

1 ≠ a2x2 cos(by) ≠
a sin(by)

g
Ô

1 ≠ a2x2 ,
a cos(by)

g
Ô

1 ≠ a2x2 + Hy

Ô

1 ≠ a2x2 sin(by), ≠aHxy

J

G13 =
I

abx
Ô

1 ≠ a2x2 cos(by)
g

,
abx

Ô
1 ≠ a2x2 sin(by)

g
,
b ≠ a2bx

2

g

J

G
a
12 = ˆxA2 = ab

g

ÓÔ

1 ≠ a2x2 cos(by),
Ô

1 ≠ a2x2 sin(by), ≠ax

Ô
(2.23)

and the energy density of the chromomagnetic field is without singularities and is a space-time
constant:

‘ = 1
4G

a
ijG

a
ij = a

2
b

2

2g2 . (2.24)

The non-vanishing components of the conserved current J
a
µ = g‘

abc
A

b
‹G

c
‹µ are6

J
a
1 = ab

2

gf
Õ

3
sin( by

f
Õ sin f

), ≠ cos( by

f
Õ sin f

), 0
4

; (2.25)

J
1
2 = a

2
b

g

3
f

Õ cos f cos( by

f
Õ sin f

) + by cot f sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 sin( by

f
Õ sin f

)
4

,

J
2
2 = a

2
b

g

3
f

Õ cos f sin( by

f
Õ sin f

) ≠ by cot f cos( by

f
Õ sin f

) ≠ by
f

ÕÕ

f
Õ2 cos( by

f
Õ sin f

)
4

,

J
3
2 = ≠

a
2
b

g
f

Õ sin f. (2.26)

One can check that ˆµJ
a
µ = ˆxJ

a
1 + ˆyJ

a
2 = 0. Despite the fact that the first term ˆµG

a
µ‹ in the

Yang Mills equation is in general singular it appears that the second term g‘
abc

A
b
‹G

c
‹µ also has

6
This current is conserved on the solutions of the Yang Mills equation Ò

ab
µ Gb

µ‹ = 0.

7



to the Nielsen-Olesen magnetic flux tubes, and it is supported without presence of any Higgs
field. This is because the magnetic flux that is defined by the equation [66]

A(L) = 1
N

TrP exp (i
j

L
Akdx

k) © exp (i�B) (5.56)

is equal to 2fi
g when a closed loop L is surrounding any oriented magnetic flux tube of the

square area 2
a

fi
b in the (x, z) plane of the solution (5.53). The distribution of currents that are

supporting the solution geometry can be obtained by calculating the conserved current

J
a
µ = g‘

abc
A

b
‹G

c
‹µ, ˆµJ

a
µ = 0. (5.57)

The non-vanishing components are:

J
1
1 = ≠

ab
2

g

Ò
1 ≠ (ax)2 cos bz, J

1
3 = ≠

a
3
bx

g

sin bz
Ò

1 ≠ (ax)2
,

J
2
1 = ab

2

g

Ò
1 ≠ (ax)2 sin bz, J

2
3 = ≠

a
3
bx

g

cos bz
Ò

1 ≠ (ax)2
,

J
3
1 = 0, J

3
3 = a

2
b

g
. (5.58)

One can check that ˆµJ
a
µ = J

a
1 ˆ1J

a
1 +ˆ3J

a
3 = 0. These currents flow around the chromomagnetic

fluxes. The quantum-mechanical stability of the solution remains to be investigated.
One can consider the limit a æ Œ of an infinitely thin surface on which we will have a

flux of the chromomagnetic field. In the opposite limit a æ 0 the flux will spread all over
the 3D-space. One can also construct solutions that describe finite or infinite many parallel
layers of flat chromomagnetic sheets distributed over the 3D-space7. The corresponding SU(2)
matrix of singular gauge transformation has the following form:

U =
A

– —

“ ”

B

=
A

cos(1
2 arccos ax)e i

2 bz
i sin(1

2 arccos ax)e i
2 bz

i sin(1
2 arccos ax)e≠

i
2 bz cos(1

2 arccos ax)e≠
i
2 bz

B

. (5.59)

Let us extend the solution (5.48) to the whole space-time keeping the parameter a fixed. For
transparency let us consider a particular vector aµ = (0, 1, 0, 0) in x direction and define the
field in the region 1 Æ x Æ 3 as

n
a(x) = {

Ò
1 ≠ (x ≠ 2)2 sin(b · x),

Ò
1 ≠ (x ≠ 2)2 cos(b · x), ≠ (x ≠ 2)}

so that the field strength is a continuous function at the point x = 1. One can extend the
7
It seems that this solution with singular surfaces can be associated with the singular surfaces considered by ’t

Hooft in [76] where he discussed a possible existence of such non-perturbative solutions (see also [77, 78, 79, 80])
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z

Figure 1: The figure demonstrates a finite part of an infinite sheet of finite thickness 2
a

in the
direction of the x axis of the solution (2.24). It is filled by parallel chromomagnetic flux tubes.
Each tube of the square area 2

a

fi

b
carries the magnetic flux 4fi

g
. The circuits show the flow of the

conserved current J
a

k
= g‘

abc
A

b

j
G

c

ik
and the arrows show the flow of the vorticity Ê

a

i
= ‘ijkˆjJ

a

k
.

moduli space of the solutions. The singularities are located on the planes Xs, where the
sin ◊(X) or ◊(Xs)

Õ vanishe:

◊(Xs) = 2fiN, N = 0, ±1, ±2...., or ◊(Xs)
Õ = 0 (2.18)

and cos / sin
3

Y

◊(X)Õ sin ◊(X)

4
are fast oscillating trigonometric functions4. Our aim is to describe

the moduli space of the covariantly constant gauge fields defined by the equations (2.5), (2.8)
and (2.17) and investigate their physical properties.

The general solution (2.17) for the vector potential A
a

µ
(2.8) depends on two coordinates

X and Y . There are two subclasses of physically interesting solutions: the time independent
solutions a0 = b0 = 0 describing stationary magnetic fluxes distributed in 3d-space and time-
dependent solutions a0 ”= 0, b0 ”= 0 describing propagation of strings and branes. For the sake
of transparency and compactness of the subsequent formulas we will identify this plane with the
(x, y) plane. Thus we are considering the vectors aµ = (0, a, 0, 0) and b‹ = (0, 0, b, 0), so that
◊(x) = f(ax), „(x, y) = by/f

Õ(ax) sin f(ax). The gauge field (2.8) together with the Abelian
field B1 = Hy will take the following form:

A
a

i
(x, y) = 1

g

Y
___________]

___________[

a

3
by((gH

ab
≠ 1) sin f + 1

sin f
) cos( by

f
Õ sin f

) ≠ f
Õ sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos f cos( by

f
Õ sin f

),

by((gH

ab
≠ 1) sin f + 1

sin f
) sin( by

f
Õ sin f

) + f
Õ cos( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos f sin( by

f
Õ sin f

),

by((gH

ab
≠ 1) cos f ≠

f
ÕÕ

f
Õ2 sin f)

4

b

f
Õ

3
≠ cos f cos( by

f
Õ sin f

), ≠ cos f sin( by

f
Õ sin f

), sin f

4

(0, 0, 0),

,(2.19)

4
There is some analogy with the Schwarzschild solution in gravity, where the solution is asymptotically flat

and regular at infinity while it has metric singularity at the Schwarzschild radius rg = 2MG/c2
of the event

horizon. This metric singularity is not a physical one because the Riemann curvature tensor is regular at r = rg.

Here as well, we have singularities of the gauge field and of the field strength tensor while the energy density is

a regular function.

5

function ◊(X). Considering ◊(X) = arcsin(
Ò

1 ≠ (a · x)2) we are obtaining a ”chromomagnetic
flux sheet” solution [23, 24]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.23)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|, and the corre-
sponding gauge field (2.8) has the following form:

A
a

i
(x, y) = 1

g

Y
________]

________[

1Ô
1≠(ax)2

3
a sin by ≠ gHy(1 ≠ (ax)2) cos by,

≠a cos by ≠ gHy(1 ≠ (ax)2) sin by, ≠gHyax

Ò
1 ≠ (ax)2

4

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

4

(0, 0, 0), (ax)2
< 1

(2.24)

where ą = (a, 0, 0), b̨ = (0, b, 0) and A
a

µ
= 0 when (ax)2

Ø 1. The current vorticity Ê
a

i
= ‘ijkˆjJ

a

k

Ê
a

3 = 1
g

(ab ≠ gH)(a2 + b
2(1 ≠ a

2
x

2)2)
(1 ≠ (ax)2)3/2

3
cos by, sin by, 0

4
, (ax)2

< 1 (2.25)

is singular at the location of the vortices x = ±1/a. There is no energy flow from the magnetic
sheet in the direction transversal to the sheet because the Poynting vector vanishes, Ęa◊H̨a = 0.
This solution is similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is
supported without presence of any Higgs field (see Fig.1). The magnetic flux that is defined by
the equation7 [3, 4]

W (L) = 1
2TrP exp (ig

j

L

Akdx
k) = cos

31
2 g �

4
(2.26)

is equal to � = 4fi

g
when a closed loop L is surrounding any oriented magnetic flux tube of the

square area 2
a

fi

b
in the (x, y) plane of the solution (2.24) (see Fig.1). It will be convenient to call

the solutions (2.24 ) and (2.17) ”superfluxons” as an abbreviation of ”superposition of fluxes”.
When ◊(X) = arcsin( 1

cosh(a·x)), we will obtain ”hyperbolic” solution, which has infinite width
in the x direction compared with the finite width solution (2.23)

n
a(x) = {

cos((b · x) cosh2(a · x))
cosh(a · x) ,

sin((b · x) cosh2(a · x))
cosh(a · x) , tanh(a · x)}. (2.27)

Finally, when ◊(X) = (a · x), we will obtain a ”trigonometric” solution

n
a(x̨) = {sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)}. (2.28)

7
The W (L) is a character of the SU(2) representations ‰j =

sin(j+1/2)�
sin(�/2) and for j = 1/2 is ‰1/2 = 2 cos(�/2).
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where i = 1, 2, 3 and the derivatives are over the whole argument ax. The A
a

0 = 0 and the
singularities are at (2.18). One can verify explicitly that it is a solution of the Yang Mills
equation [23, 24]. The nonzero component of the field strength tensor G

a

µ‹
has the following

form:
G

a

12(x, y) = ab ≠ gH

g
n

a(x, y), (2.20)

and the energy density of the chromomagnetic field is a regular function and is a space-time
constant:

‘ = 1
4G

a

ij
G

a

ij
= (gH ≠ ab)2

2g2 . (2.21)

There are two important limiting solutions when H = 0 and gH = ab. In the first case we have
solutions which have constant energy densities ‘ = (ab)2

/2g
2, like the solution (2.7), and are

separated from each other by potential barriers. In the second case we will get new vacuum
solutions, because for them Gµ‹ = 0 and ‘ = 0. The solutions represent the flat connections
characterised by the vectors (H̨, ą, b̨). They are separated from the Aµ = 0 vacuum solution
also by potential barriers. In the next sections we will analyse the shape of these barriers.

The non-vanishing components of the conserved current J
a

µ
= g‘

abc
A

b

‹
G

c

‹µ
at H = 0 are5

J
a

1 = ab
2

gf
Õ

3
sin( by

f
Õ sin f

), ≠ cos( by

f
Õ sin f

), 0
4

; (2.22)

J
1
2 = a

2
b

g

3
f

Õ cos f cos( by

f
Õ sin f

) + by cot f sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 sin( bz

f
Õ sin f

)
4

,

J
2
2 = a

2
b

g

3
f

Õ cos f sin( by

f
Õ sin f

) ≠ by cot f cos( by

f
Õ sin f

) ≠ by
f

ÕÕ

f
Õ2 cos( by

f
Õ sin f

)
4

,

J
3
2 = ≠

a
2
b

g
f

Õ sin f.

One can check that ˆµJ
a

µ
= ˆxJ

a

1 + ˆyJ
a

2 = 0 and that the vorticity Ê
a

i
= ‘ijkˆjJ

a

k
of the

current is nonzero and is singular at the location of the vortices. The space-time structure
of the solution (2.8), (2.19) is reminiscent of the ”spaghetti”-type configurations found as an
approximate solution of the Yang Mills equation in a background field (2.7) [31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41]. The equations (2.8), (2.7), (2.17) and (2.19) represent an exact
non-perturbative solution of the YM equation in the background chromomagnetic field (2.7) 6.

Let us consider solutions through which one can expose the essential properties of the
general solution. To obtain a particular solution in an explicit form we have to choose the

5
This current is conserved on the solutions of the Yang Mills equation Ò

ab
µ Gb

µ‹ = 0.

6
An early attempt to find a larger class of space-homogeneous vacuum Yang-Mills fields was made in [42,

43, 44, 45, 46, 47]. It was shown that space-homogeneous vacuum fields exhibit deterministic chaos [48]. The

vacuum fields were also considered in [49, 50, 51, 52, 53, 54, 55, 37, 56, 57, 58, 59, 60]. The approximate

solutions in the background field (2.7) were investigated in [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] and have a

”spaghetti”-type structure of magnetic flux tubes.
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solutions, because for them Gµ‹ = 0 and ‘ = 0. The solutions represent the flat connections
characterised by the vectors (H̨, ą, b̨). They are separated from the Aµ = 0 vacuum solution
also by potential barriers. In the next sections we will analyse the shape of these barriers.
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current is nonzero and is singular at the location of the vortices. The space-time structure
of the solution (2.8), (2.19) is reminiscent of the ”spaghetti”-type configurations found as an
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non-perturbative solution of the YM equation in the background chromomagnetic field (2.7) 6.

Let us consider solutions through which one can expose the essential properties of the
general solution. To obtain a particular solution in an explicit form we have to choose the
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Figure 2: The figure shows mapping (2.23) n
a(x, y) = {

Ô
1 ≠ x2 cos(y),

Ô
1 ≠ x2 sin(y), x} of a

cylinder cell C
2
0 on the plane (x, y) to the sphere S

2
0 . The mapping of the cylinder boundaries

x = ±1 to the north and south poles is given by the formula n
a(±1, y) = (0, 0, ±1), where

y œ [0, 2fi]. The lines L1,2 are identified on a sphere due to the formula n
a(x, 0) = n

a(x, 2fi) =
(
Ô

1 ≠ x2, 0, x), where x œ [≠1, 1]. Each cell C
2
k

defines magnetic fluxes in the z direction (3.33).

3 Topological properties of the solution
Let us consider the topological properties of the solution (2.17), (2.19). The conserved topo-
logical current and the corresponding magnetic charge can be defined in terms of the Abelian
field strength Gµ‹ (2.9) in analogy with the definition (1.2)

Kµ = 1
2‘µ‹⁄flˆ‹G⁄fl = 1

2g
‘µ‹⁄flˆ‹S⁄fl, ˆµKµ = 0, Qm =

⁄

V

K0d
3
x. (3.29)

Here and in the next section we are considering the case of vanishing Abelian field Fµ‹ = 0.
In terms of the tensor Sµ‹ (2.10) and of the colour unit vector n

a (2.17) the topological charge
will take the following equivalent forms:

K0 = 1
2g

‘ijkˆiSjk = 1
2g

‘ijkˆi(‘abc
n

a
ˆjn

b
ˆkn

c), (3.30)

Qm = 1
2g

s
V

‘ijk‘
abc

ˆin
a
ˆjn

b
ˆkn

c
d

3
x = 1

2g

s
ˆV

‘ijk‘
abc

n
a
ˆjn

b
ˆkn

c
d‡i = 1

2g

s
ˆV

d‡i ‘ijkSjk.

As far as the solution is homogeneous in the z direction, we have to consider a magnetic flux
through the space volume V that is a rectangular box with its two boundaries being parallel
to the (x, y) plane at the distance L from each other, and the other four boundaries will be
defined for each particular solution individually.

Let us first consider the magnetic sheet solution (2.23), (2.24). The rectangular boxes in
this case will have four boundaries given by the equations x = ±

1
a

and y = [2fi

b
k,

2fi

b
(k + 1)],

k = 0, ±1, ±2, ... Because the tensor Sij is a space constant, the total charge Qm = 0 (3.30).
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function ◊(X). Considering ◊(X) = arcsin(
Ò

1 ≠ (a · x)2) we are obtaining a ”chromomagnetic
flux sheet” solution [23, 24]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.23)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|, and the corre-
sponding gauge field (2.8) has the following form:

A
a

i
(x, y) = 1

g

Y
________]

________[

1Ô
1≠(ax)2

3
a sin by ≠ gHy(1 ≠ (ax)2) cos by,

≠a cos by ≠ gHy(1 ≠ (ax)2) sin by, ≠gHyax

Ò
1 ≠ (ax)2

4

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

4

(0, 0, 0), (ax)2
< 1

(2.24)

where ą = (a, 0, 0), b̨ = (0, b, 0) and A
a

µ
= 0 when (ax)2

Ø 1. The current vorticity Ê
a

i
= ‘ijkˆjJ

a

k

Ê
a

3 = 1
g

(ab ≠ gH)(a2 + b
2(1 ≠ a

2
x

2)2)
(1 ≠ (ax)2)3/2

3
cos by, sin by, 0

4
, (ax)2

< 1 (2.25)

is singular at the location of the vortices x = ±1/a. There is no energy flow from the magnetic
sheet in the direction transversal to the sheet because the Poynting vector vanishes, Ęa◊H̨a = 0.
This solution is similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is
supported without presence of any Higgs field (see Fig.1). The magnetic flux that is defined by
the equation7 [3, 4]

W (L) = 1
2TrP exp (ig

j

L

Akdx
k) = cos

31
2 g �

4
(2.26)

is equal to � = 4fi

g
when a closed loop L is surrounding any oriented magnetic flux tube of the

square area 2
a

fi

b
in the (x, y) plane of the solution (2.24) (see Fig.1). It will be convenient to call

the solutions (2.24 ) and (2.17) ”superfluxons” as an abbreviation of ”superposition of fluxes”.
When ◊(X) = arcsin( 1

cosh(a·x)), we will obtain ”hyperbolic” solution, which has infinite width
in the x direction compared with the finite width solution (2.23)

n
a(x) = {

cos((b · x) cosh2(a · x))
cosh(a · x) ,

sin((b · x) cosh2(a · x))
cosh(a · x) , tanh(a · x)}. (2.27)

Finally, when ◊(X) = (a · x), we will obtain a ”trigonometric” solution

n
a(x̨) = {sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)}. (2.28)

7
The W (L) is a character of the SU(2) representations ‰j =

sin(j+1/2)�
sin(�/2) and for j = 1/2 is ‰1/2 = 2 cos(�/2).
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sin(j+1/2)�
sin(�/2) and for j = 1/2 is ‰1/2 = 2 cos(�/2).
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2aby tanh2(ax) cos(by cosh2(ax))≠asech2(ax) sin(by cosh2(ax))
sech(ax) , ≠2aby tanh(ax)

4

3
b sinh(ax) cosh(ax)sech(ax) sin

1
by cosh2(ax)

2
,

b sinh(ax) cosh(ax)sech(ax) cos
1
by cosh2(ax)

2
, ≠b

4

(0, 0, 0)
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µ = 1

g

Y
_______]

_______[

(0, 0, 0)
a

3
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1≠(ax)2 , ≠

cos byÔ
1≠(ax)2 , 0

4
(ax)2
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b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

4

(0, 0, 0)

(3.30)

A
a
µ = 0, (ax)2

Ø 1,

where aµ = (a, 0, 0, 0), b‹ = (0, b, 0, 0). The location of the singular planes defined by the
equation (2.18) is at ax = ±1. There is no energy flow from the magnetic sheet in the direction
transversal to the sheet because the Poynting vector vanishes, Ęa ◊ H̨a = 0. This solution is
similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
presence of any Higgs field (see Fig.1). This is because the magnetic flux that is defined by the
equation [12, 13]

A(L) = 1
2TrP exp (i

j

L
Akdx

k) = sin(�B) (3.31)

is equal to �B = 2fi
g when a closed loop L is surrounding any oriented magnetic flux tube of

the square area 2
a

fi
b in the (x, y) plane of the solution (3.30) (see Fig.1). It will be convenient

to call the solutions (3.30 ) and (2.17) ”superfluxons” as an abbreviation for ”superposition of
fluxes”.

When ◊(X) = arcsin( 1
cosh(a·x)), we will obtain ”hyperbolic” solution, which has infinite width

in the x direction compared with the finite width solution (3.28):

n
a(x) = {

Ò
1 ≠ tanh(a · x)2 cos((b·x) cosh2(a·x)),

Ò
1 ≠ tanh(a · x)2 sin((b·x) cosh2(a·x)), tanh(a·x)}.

(3.32)
The location of the singular planes defined by the equation (2.18) is at ax = ±Œ when aµ =
(a, 0, 0, 0), b‹ = (0, b, 0, 0). Finally, when ◊(X) = (a · x), we will obtain a ”trigonometric”
solution [2, 3, 4]:

n
a(x̨) = {sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)}. (3.33)
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2 Sourceless gauge fields

The covariantly constant gauge fields are defined by the equation [26, 27, 28, 29, 30]

Ò
ab
fl G

b
µ‹ = 0, (2.6)

where G
a
µ‹ = ˆµA

a
‹ ≠ ˆ‹A

a
µ ≠ gÁ

abc
A

b
µA

c
‹ , Ò

ab
µ (A) = ”

ab
ˆµ ≠ gÁ

acb
A

c
µ, and are the solutions of the

sourceless Yang-Mills equation Ò
ab
µ G

b
µ‹ = 0 as well4. By taking the covariant derivative Ò

ca
⁄ of

the l.h.s (2.6) and by interchanging the derivatives one can get [G⁄fl, Gµ‹ ] = 0, which means
that the field strength tensor factorises into the product of the Lorentz tensor and the colour
unit vector in the direction of the Cartan’s sub-algebra:

G
a
µ‹(x) = Gµ‹(x)na(x). (2.7)

Both fields can depend on the space-time coordinates. The well known solution of (2.6) has
the following form [26, 27, 28, 29, 30]:

A
a
µ = ≠

1
2Fµ‹x‹n

a
, (2.8)

where Fµ‹ and n
a are space-time independent parameters, n

a
n

a = 1. It is convenient to call
this solution the ”constant chromomagnetic field” 5 because n

a is a constant colour vector. The
general solutions of the equation (2.6) were found recently in [2, 3, 4]. It appears that the
moduli space of covariantly constant gauge fields has large dimensionality and is much larger
than the moduli space of the constant chromomagnetic fields defined by the equation (2.8).
The new solutions can be obtained through the nontrivial space-time dependence of the unit
vector n

a(x) [2, 3, 4]. Considering the Ansatz [32, 33, 34, 6, 35, 36, 2, 3, 4]

A
a
µ = Bµn

a + 1
g

Á
abc

n
b
ˆµn

c
, (2.9)

where Bµ(x) is the Abelian Lorentz vector and n
a(x) is a space-time dependent colour unit

vector n
a
n

a = 1, n
a
ˆµn

a = 0, one can observe that the field strength tensor factorises [32, 33]:

G
a
µ‹ = (Fµ‹ + 1

g
Sµ‹) n

a
© Gµ‹ n

a
, (2.10)

where
Fµ‹ = ˆµB‹ ≠ ˆ‹Bµ, Sµ‹ = Á

abc
n

a
ˆµn

b
ˆ‹n

c
. (2.11)

4
The e�ective Lagrangian is gauge invariant only on sourceless-vacuum fields [26, 31].

5
The constant solutions have six parameters Fµ‹ , four translations x‹ æ x‹ + x0‹ and two parameters na

in

the case of the SU(2) group.

4

of the field strength tensor G
a
µ‹ is of the following form:

G
a
12(x) = ab

g
n

a(x, y), (2.20)

G
a
µ‹(x, y) = ab

g

Y
_____]

_____[

(0, 0, 0),3
sin(by cosh2(ax))

cosh(ax) ,
cos(by cosh2(ax))

cosh(ax) ,
sin(ax)

cosh(ax)

4
,

(0, 0, 0),
(0, 0, 0)

, (2.21)

G
a
µ‹(x, y) = ab

g

Y
_____]

_____[

(0, 0, 0)3
Ô

1 ≠ a2x2 cos(by),
Ô

1 ≠ a2x2 sin(by), ≠ax

4
,

(0, 0, 0),
(0, 0, 0)

, (2.22)

G12 =
I

Hy

Ô

1 ≠ a2x2 cos(by) ≠
a sin(by)

g
Ô

1 ≠ a2x2 ,
a cos(by)

g
Ô

1 ≠ a2x2 + Hy

Ô

1 ≠ a2x2 sin(by), ≠aHxy

J

G13 =
I

abx
Ô

1 ≠ a2x2 cos(by)
g

,
abx

Ô
1 ≠ a2x2 sin(by)

g
,
b ≠ a2bx

2

g

J

G
a
12 = ˆxA2 = ab

g

ÓÔ

1 ≠ a2x2 cos(by),
Ô

1 ≠ a2x2 sin(by), ≠ax

Ô
(2.23)

and the energy density of the chromomagnetic field is without singularities and is a space-time
constant:

‘ = 1
4G

a
ijG

a
ij = a

2
b

2

2g2 . (2.24)

The non-vanishing components of the conserved current J
a
µ = g‘

abc
A

b
‹G

c
‹µ are6

J
a
1 = ab

2

gf
Õ

3
sin( by

f
Õ sin f

), ≠ cos( by

f
Õ sin f

), 0
4

; (2.25)

J
1
2 = a

2
b

g

3
f

Õ cos f cos( by

f
Õ sin f

) + by cot f sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 sin( by

f
Õ sin f

)
4

,

J
2
2 = a

2
b

g

3
f

Õ cos f sin( by

f
Õ sin f

) ≠ by cot f cos( by

f
Õ sin f

) ≠ by
f

ÕÕ

f
Õ2 cos( by

f
Õ sin f

)
4

,

J
3
2 = ≠

a
2
b

g
f

Õ sin f. (2.26)

One can check that ˆµJ
a
µ = ˆxJ

a
1 + ˆyJ

a
2 = 0. Despite the fact that the first term ˆµG

a
µ‹ in the

Yang Mills equation is in general singular it appears that the second term g‘
abc

A
b
‹G

c
‹µ also has

6
This current is conserved on the solutions of the Yang Mills equation Ò

ab
µ Gb

µ‹ = 0.
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,
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2 = ≠

a
2
b

g
f
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One can check that ˆµJ
a
µ = ˆxJ

a
1 + ˆyJ

a
2 = 0. Despite the fact that the first term ˆµG

a
µ‹ in the

Yang Mills equation is in general singular it appears that the second term g‘
abc

A
b
‹G

c
‹µ also has

singularities which compensate each other, and the equation is fulfilled in the vicinity of the
singular planes.

We conclude that the moduli space of covariantly constant gauge fields has large dimen-

sionality and is much larger than the moduli space of constant chromomagnetic field (2.8). In
comparison, the moduli space Ik,N of the YM self-duality equation in the Euclidean space [8]
has the dimension dimIk,N = 4kN in a given winding sector k for the SU(N) group [37, 38].
Our aim is to describe the moduli space of the covariantly constant gauge fields defined by the
equations (2.6), (2.9), (2.17) and (2.21) and investigate their physical properties.

6
This current is conserved on the solutions of the Yang Mills equation Ò

ab
µ Gb

µ‹ = 0.
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1 Introduction

In the earlier investigations of the vacuum polarisation by the covariantly constant gauge fields
[1, 2, 3, 4] it was realised that the consideration of the vacuum polarisation in the quadratic
approximation displays an apparent instability of the chromomagnetyic field due to the neg-
ative/unstable mode and the appearance of an imaginary term in the e�ective Lagrangian
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

By generalising the calculation advocated earlier by Ambjorn, Nielsen, Olesen [7, 8, 9], Flory
[13], and other authors [10, 11, 12, 14, 16, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
one can perform an exact integration over nonlinearly interacting negative/unstable modes and
obtain the e�ective Lagrangian for the SU(N) gauge group [30, 31, 32], which does not contain
imaginary terms and is identical to the expression [2]:

L = ≠F ≠
11N

96fi2 g
2
F

3
ln 2g

2
F

µ4 ≠ 1
4

, (1.1)

where F = 1
4G

a
µ‹G

a
µ‹ = H̨

2
a≠Ę

2
a

2 > 0 and G = 1
4G

a
µ‹G̃

a
µ‹ = H̨aĘa = 0. This consideration reflects

the fact that a magnetic field does not produce work and cannot create particle pairs from
the vacuum [2], opposite to what takes place in the case of chromoelectric fields [1]. The
covariantly constant chromomagnetic vacuum fields proved to be stable and indicated that the

Yang-Mills vacuum is a highly degenerate quantum state [30, 31, 32].
In this respect it seems important to investigate a moduli space of vacuum field config-

urations and describe precisely the degeneracy of the classical vacuum fields1. An early at-
tempt to find a larger class of space-homogeneous vacuum Yang-Mills fields was made in
[29, 35, 36, 37, 38, 39]. It was shown that space-homogeneous vacuum fields exhibit determin-
istic chaos [40]. The vacuum fields were also considered in [24, 25, 26, 27, 28, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 40, 51, 52]. The class of solutions in the background field was investigated
in a series of articles and has a ”spaghetti”-type structure of magnetic tubes [53, 54, 55, 9].

The problem that remained unsolved was to identify how large is the class of covariantly

constant gauge fields defined by the equation [1, 2, 3, 34, 56]

Ò
ab
fl G

b
µ‹ = 0. (1.2)

The covariantly constant gauge fields represent a subclass of solutions of the sourceless Yang-
Mills equation

Ò
ab
µ G

b
µ‹ = 0. (1.3)

1
Here, and afterwards, the phrase ”vacuum fields” refers to the gauge fields that are the solutions of the

sourceless Yang-Mills equation [33] and, in particular, the covariantly constant gauge fields [1, 34].
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where
G

a
µ‹ = ˆµA

a
‹ ≠ ˆ‹A

a
µ ≠ gÁ

abc
A

b
µA

c
‹ (1.5)

and Ò
ab
µ (A) = ”

ab
ˆµ ≠ gÁ

acb
A

c
µ. The covariantly constant gauge fields are the solutions of the

sourceless Yang-Mills equation Ò
ab
µ G

b
µ‹ = 0 as well1 By taking covariant derivative Ò

ca
⁄ of the

l.h.s (1.4) and interchanging the derivatives one can get

[G⁄fl, Gµ‹ ] = 0. (1.6)

The field strength tensor factorises into the product of Lorentz tensor and colour vector, which
is in the direction of the Cartan’s sub-algebra

G
a
µ‹(x) = Gµ‹(x)na(x). (1.7)

Both fields can depend on the space-time coordinates. The well know solution has the form

A
a
µ = ≠

1
2Fµ‹x‹n

a
, (1.8)

where Fµ‹ and n
a are space-time independent parameters. The general solutions of the equation

(1.4) were not found in the past investigations and the problem that remained unsolved was
to identify how large is the class of covariantly constant gauge fields. It appears that the class
of covariantly constant gauge fields is much larger than the fields defined by the equation (1.8)
and can be obtained through the nontrivial space-time dependence of the unit vector n

a(x) in
(1.7). Let us consider the Cho Ansatz [42, 58, 59] (see also [60], formula (2.17), [61], formula
(2.11), and [62]):

A
a
µ = Bµn

a + 1
g

Á
abc

n
b
ˆµn

c
, (1.9)

where Bµ(x) is the Abelian Lorentz vector and n
a(x) is a space-time dependent colour unit

vector n
a
n

a = 1, n
a
ˆµn

a = 0. The unit vector n
a(x) describes two independent field variables.

The covariant derivative of the colour unit vector in the background field (1.9) is equal to zero
[42, 58]:

Ò
ab
µ n

b = ˆµn
a

≠ gÁ
abc

A
b
µn

c = 0, (1.10)

and therefore [Òµ, Ò‹ ]ab
n

b = 0. It follows that the field strength tensor factorises [42, 58]:

G
a
µ‹ = (Fµ‹ + 1

g
Sµ‹) n

a
, (1.11)

1
The covariantly constant gauge fields are important because they are solutions of the sourceless vacuum

Yang-Mills equation and because the e�ective Lagrangian is gauge invariant only on sourceless vacuum fields

[1, 57]. In the literature one can find an incorrect statement that the e�ective Lagrangian is gauge invariant on

any background field.
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[1, 57]. In the literature one can find an incorrect statement that the e�ective Lagrangian is gauge invariant on
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2 Covariantly Constant Gauge Fields

The covariantly-constant gauge fields are defined by the equation [1, 2, 3, 34, 56]
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interchanging the derivatives one can get

[Ò⁄, Òfl]ab
G

b
µ‹ = 0. (2.10)

The commutator of covariant derivatives is equal to the field strength tensor:
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The problem that remained unsolved was to identify how large is the class of covariantly constant gauge fields defined by the equation 
[1–3,34,56]

∇!"
# $"

%& = 0. (1.2)
The covariantly constant gauge fields represent a subclass of solutions of the sourceless Yang-Mills equation

∇!"
% $"

%& = 0. (1.3)
The covariantly constant gauge fields are important because they are solutions of the sourceless Yang-Mills equation and the effective 
Lagrangian is gauge invariant only on these vacuum fields [1,57]. It follows from the equation (1.2) that the field strength tensor 
factorises into the product of Lorentz tensor $%&(') and colour unit vector (!('), which is in the direction of the Cartan’s sub-algebra 
[1,34,56]:

$!
%&(') =$%&(')(!('). (1.4)

Both fields can depend on the space-time coordinates. The solution of the equation (1.2) that was found in the early investigations 
has the following form [1,34,56]:

)!
% = −1

2*%&'&(!, (1.5)
where (! is a constant colour unit vector in the Cartan sub-algebra of +, (-) group. As it will be demonstrated in the forthcoming 
sections, the class of covariantly constant gauge fields is infinite-dimensional and is much larger than the fields defined by the 
equation (1.5). A wider class of covariantly-constant gauge fields can be obtained through the nontrivial space-time dependence of 
the unit vector (!(') and by using the general properties of the Cho ansatz [43,58,59] (see also [60], formula (2.17), [61], formula 
(2.11), and [62]):

)!
% =.%(! +

1
/
0!"1("2%(1 . (1.6)

The important property of the ansatz is that the corresponding field strength tensor factorises into the Lorentz and colour structures 
[43,58,59]:

$!
%& = (*%& +

1
/
+%&) (!('), (1.7)

very similarly to the factorisation (1.4). It is therefore natural to search for new solutions of (1.2) in the form of (1.6). For the sake 
of transparency of the forthcoming calculations and formulas we will consider mostly the +, (2) gauge group, keeping in mind that 
the formulas are valid for the +, (-) group as well. The new class of trigonometric solutions defined in the whole space-time and 
polynomial solutions representing non-perturbative magnetic sheets of finite thickness will be derived in the forthcoming sections. 
These solutions represent a non-perturbative chromomagnetic flux tubes (vortices), which have periodic lattice structure distributed 
in space and have opposite orientations. The geometrical structure of the solutions is self-sustaining without presence of any Higgs 
field support. The chromomagnetic flux configurations are a superposition of chromomagnetic vortices, which are similar to the 
Nielsen-Olesen magnetic vortices [63,64]. The solutions have a non-vanishing Hopf topological density. In the last section we derive 
a general solution of the differential equation (1.2).

2. Covariantly constant gauge fields

The covariantly-constant gauge fields are defined by the equation [1–3,34,56]

∇!"
# $"

%& = 0, (2.8)
where

$!
%& = 2%)!

& − 2&)!
% − /0!"1)"

%)
1
& (2.9)

and ∇!"
% ()) = 3!"2% − /0!1")1

% . The covariantly constant gauge fields are the solutions of the vacuum Yang-Mills equation (1.3) as 
well. By taking covariant derivative ∇1!

4 of the l.h.s and interchanging the derivatives one can get

[∇4,∇#]!"$"
%& = 0. (2.10)

The commutator of covariant derivatives is equal to the field strength tensor:

[∇4,∇#]!" = −/0!1"$1
4#, (2.11)

and from (2.10) it follows that

[$4#,$%&] = 0. (2.12)
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where Fµ‹ and n
a are space-time independent parameters.

The problem that remained unsolved was to identify how large is the class of the covariantly
constant gauge fields defined by the equation (2.8). It appears that the class of the covariantly
constant gauge fields is much larger than the fields defined by the equation (2.17) and that in
general these fields can have nontrivial space-time dependence. A wider class of covariantly
constant gauge fields can be obtained through the nontrivial space-time dependence of the unit
vector n

a(x) in (2.13).
Let us consider the Cho ansatz [43, 58, 59] (see also [60], formula (2.17), [61], formula

(2.11), and [62]):
A

a
µ = Bµn

a + 1
g

Á
abc

n
b
ˆµn

c
, (2.18)

where Bµ(x) is the Abelian Lorentz vector and n
a(x) is a space-time dependent colour unit

vector:
n

a
n

a = 1, n
a
ˆµn

a = 0. (2.19)

The unit vector n
a(x) describes two independent field variables. One can get convinced that

the covariant derivative of the colour unit vector in the background field (2.18) is equal to zero
[43, 58]:

Ò
ab
µ n

b = ˆµn
a

≠ gÁ
abc

A
b
µn

c = 0, (2.20)

and therefore
[Òµ, Ò‹ ]ab

n
b = ≠gÁ

acb
G

c
µ‹n

b = 0. (2.21)

It follows that the field strength tensor (2.9) factorises [43, 58]:

G
a
µ‹ = (Fµ‹ + 1

g
Sµ‹) n

a
, (2.22)

where
Fµ‹ = ˆµB‹ ≠ ˆ‹Bµ, Sµ‹ = Á

abc
n

a
ˆµn

b
ˆ‹n

c
. (2.23)

There are two contributions to the field strength tensor G
a
µ‹ , the first one is from the Abelian

vector field Bµ(x) and the second one is from the colour unit vector n
a(x). It is useful to

parametrise the unit vector in terms of spherical angles [43, 58]:

n
a = (sin ◊ cos „, sin ◊ sin „, cos ◊), (2.24)

and express Sµ‹ in terms of spherical angles as well:

Sµ‹ = sin ◊(ˆµ◊ˆ‹„ ≠ ˆ‹◊ˆµ„). (2.25)
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where
Fµ‹ = ˆµB‹ ≠ ˆ‹Bµ, Sµ‹ = Á

abc
n

a
ˆµn

b
ˆ‹n

c
. (1.12)

There are two contributions to the field strength tensor G
a
µ‹ , the first one is from the Abelian

vector field Bµ(x) and the second one is from the colour unit vector n
a(x). It is useful to

parametrise the unit vector in terms of spherical angles [42, 58]:

n
a = (sin ◊ cos „, sin ◊ sin „, cos ◊), (1.13)

and then express Sµ‹ in terms of spherical angles:

Sµ‹ = sin ◊(ˆµ◊ˆ‹„ ≠ ˆ‹◊ˆµ„). (1.14)

It follows then that Sµ‹ is a field strength tensor of the colour field Cµ:

Sµ‹ = ˆµC‹ ≠ ˆ‹Cµ, Cµ = ≠ cos ◊ˆµ„. (1.15)

The colour field strength tensor Sµ‹ can be expressed either in terms of colour unit vector n
a,

as in (1.12), or in terms of colour field Cµ, as in (1.15). This fact is not accidental because the
two-form d(Sµ‹dxµ · dx‹) = 0 is an exact form and is the derivative of one-form Cµdxµ.

The important property of the ansatz (1.9) is that the field strength tensor factorises into
the Lorentz and colour structures (1.11). This factorisation is identical to the factorisation
(1.7) of covariantly constant gauge fields. It is therefore natural to search solutions in the form
of (1.9). In that case the (1.4) reduces to the following equation:

n
a
ˆfl(Fµ‹ + 1

g
Sµ‹) = 0, (1.16)

meaning that the sum of terms in the brackets should be a constant tensor:

Gµ‹ = Fµ‹ + 1
g

Sµ‹ , (1.17)

where Gµ‹ is an antisymmetric constant tensor2. The moduli space of covariantly constant
gauge fields increases because there are two independent tensors that can be used to construct
solutions: the Abelian tensor Fµ‹ and the colour tensor Sµ‹ . Both of them can be space-time
independent tensors or the space-time dependence of Fµ‹ and Sµ‹ cancels in the sum.

2
In that case the Ansatz (1.9) is a solution of the sourceless Yang Mills equation and the corresponding

e�ective Lagrangian is gauge invariant [1, 57]. On a general Ansatz (1.9) the e�ective Lagrangian is not gauge

invariant.
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This factorisation is identical to the factorisation (2.7) of covariantly constant gauge fields, and
it is therefore natural to search solutions of (2.6) in the form (2.9). In that case (2.6) reduces
to the following equation:

n
a
ˆfl(Fµ‹ + 1

g
Sµ‹) = 0, (2.12)

meaning that the sum of terms in the brackets should be a constant tensor: Gµ‹ = Fµ‹ + 1
g Sµ‹ .

It is useful to parametrise the unit vector in terms of spherical angles [32, 33]:

n
a = (sin ◊ cos „, sin ◊ sin „, cos ◊), (2.13)

and express Sµ‹ in terms of spherical angles as well: Sµ‹ = sin ◊(ˆµ◊ˆ‹„ ≠ ˆ‹◊ˆµ„). First let us
consider the solutions that have constant space components Sij and the time components S0i

and Fµ‹ = 0, Bµ = 0. These solutions represent pure chromomagnetic vacuum fields, and the
equation (2.6) reduces to the following system of partial di�erential equations:

S12 = sin ◊(ˆ1◊ˆ2„ ≠ ˆ2◊ˆ1„)

S23 = sin ◊(ˆ2◊ˆ3„ ≠ ˆ3◊ˆ2„)

S13 = sin ◊(ˆ1◊ˆ3„ ≠ ˆ3◊ˆ1„). (2.14)

The linear combination of these equations defines the angle „ as an arbitrary function of the
variable Y = b1x + b2y + b3z ≠ b0t, thus „ = „(Y ) = „(b1x + b2y + b3z ≠ b0t) = „(b · x),
where bµ, µ = 1, 2, 3, 0 are arbitrary real numbers. After substituting the above function into
the equations (2.14) one can observe that the angle ◊ is a function of the alternative variable
X = a1x + a2y + a3z ≠ a0t, thus ◊ = ◊(Y ) = ◊(a1x + a2y + a3z ≠ a0t) = ◊(a · x), where
aµ, µ = 1, 2, 3, 0 are arbitrary real numbers as well. It follows that the equations (2.14) reduce
to the following di�erential equations:

Sµ‹ = aµ · b‹ sin ◊(X) ◊(X)Õ

X „(Y )Õ

Y , (2.15)

where the derivatives are over the respective arguments. The solutions with a constant tensor
Sij should fulfil the following equation:

sin ◊(X) ◊(X)Õ

X „(Y )Õ

Y = 1, (2.16)

so that Sµ‹ = aµ · b‹ . The variables in (2.15) are independent, therefore we can choose an
arbitrary function ◊ and define the function „ by integration. Let the ◊(X) be an arbitrary
function of X, then „ = Y/ sin ◊(X)◊(X)Õ

X , and we have the following solution for the colour
unit vector (2.13):

n
a(x̨) = {sin ◊(X) cos

3
Y

◊(X)Õ sin ◊(X)

4
, sin ◊(X) sin

3
Y

◊(X)Õ sin ◊(X)

4
, cos ◊(X)}. (2.17)
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The covariantly constant gauge fields are important because they are solutions of the sourceless
Yang-Mills equation and the e�ective Lagrangian is gauge invariant only on these vacuum fields

[1, 57]. It follows from the equation (1.2) that the field strength tensor factorises into the
product of Lorentz tensor Gµ‹(x) and colour unit vector n

a(x), which is in the direction of the
Cartan’s sub-algebra [1, 34, 56]:

G
a
µ‹(x) = Gµ‹(x)na(x). (1.4)

Both fields can depend on the space-time coordinates. The solution of the equation (1.2) that
was found in the early investigations has the following form [1, 34, 56]:

A
a
µ = ≠

1
2Fµ‹x‹n

a
, (1.5)

where n
a is a constant colour unit vector in the Cartan sub-algebra of SU(N) group. As it will

be demonstrated in the forthcoming sections, the class of covariantly constant gauge fields is
infinite-dimensional and is much larger than the fields defined by the equation (1.5). A wider
class of covariantly-constant gauge fields can be obtained through the nontrivial space-time
dependence of the unit vector n

a(x) and by using the general properties of the Cho ansatz
[43, 58, 59] (see also [60], formula (2.17), [61], formula (2.11), and [62]):

A
a
µ = Bµ(x)na(x) + 1

g
Á

abc
n

b(x)ˆµn
c(x). (1.6)

The important property of the ansatz is that the corresponding field strength tensor factorises
into the Lorentz and colour structures [43, 58, 59]:

G
a
µ‹ = (Fµ‹ + 1

g
Sµ‹) n

a(x), (1.7)

very similarly to the factorisation (1.4). It is therefore natural to search for new solutions in
the form of (1.6). For the sake of transparency of the forthcoming calculations and formulas
we will consider mostly the SU(2) gauge group, keeping in mind that the formulas are valid for
the SU(N) group as well. The new class of trigonometric solutions defined in the whole space-
time and polynomial solutions representing non-perturbative magnetic sheets of finite thickness
will be derived in the forthcoming sections. These solutions represent a non-perturbative
chromomagnetic flux tubes (vortices), which have periodic lattice structure distributed in space
and have opposite orientations. The geometrical structure of the solutions is self-sustaining
without presence of any Higgs field support. The chromomagnetic flux configurations are a
superposition of chromomagnetic vortices, which are similar to the Nielsen-Olesen magnetic
vortices [63, 64]. The solutions have a non-vanishing Hopf topological density. In the last
section we derive a general solution of the di�erential equation (1.2).

2
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„(b · x). After substituting the above function into the equations (6.65) one can observe that
the angle ◊ is an arbitrary function of the alternative variable X = a1x + a2y + a3z, thus
◊ = ◊(Y ) = ◊(a1x + a2y + a3z) = ◊(a · x). It follows then that three equations (6.65) reduce to
the following di�erential equations:

Sij = ai · bj sin ◊(X) ◊(X)Õ

X „(Y )Õ

Y , (6.66)

where the derivatives are over the respective arguments. If we are interested in finding the
solutions with a constant tensor Sij, then the following condition should be fulfilled:

sin ◊(X) ◊(X)Õ

X „(Y )Õ

Y = 1, (6.67)

so that
Sij = ai · bj. (6.68)

The variables in (6.66) are independent, and one can choose an arbitrary function for the angle
◊ and define the angle „. In particular, if ◊(X)Õ

X = 1, we will have ◊(X) = X + X0 and
„ = Y/ sin(X + X0), thus recovering the solution (3.31). If ◊(X) is an arbitrary function of
f(X), then „ = Y/ sin f(X)f(X)Õ

X , and we have the following solution for the colour unit
vector:

n
a(x̨) = {sin f(X) cos

3
Y

f
Õ(X) sin(f(X))

4
, sin(f(X)) sin

3
Y

f
Õ(X) sin(f(X))

4
, cos(f(X))}.

(6.69)
Thus the equation (6.67) defines the infinite class of solutions by choosing an arbitrary function
◊ and then obtaining „ by integration or, alternatively, by considering an arbitrary function for
„ and obtaining ◊ by integration. We conclude that the moduli space of covariantly constant
gauge fields is infinite-dimensional because of the presence of an arbitrary function f(X). In
comparison, the moduli space Ik,N of the YM self-duality equation in the Euclidean space
has the dimension dimIk,N = 4kN for the SU(N) group. It would be interesting to describe
precisely the moduli space of the covariantly constant gauge fields defined by (2.8) and (6.66).

7 Conclusion

Here we investigated the moduli space of the covariantly constant gauge field solutions repre-
senting the Yang-Mills classical vacuum. The identification of the moduli space of the covari-
antly constant gauge fields defined by the equation (2.8) remained unsolved for a long time.
We found that this moduli space is infinite-dimensional and therefore is much larger than it
had been previously expected.
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◊ = ◊(Y ) = ◊(a1x + a2y + a3z) = ◊(a · x). It follows then that three equations (6.64) reduce to
the following di�erential equations:

Sij = ai · bj sin ◊(X) ◊(X)Õ

X „(Y )Õ

Y , (6.65)

where the derivatives are over the respective arguments. If we are interested in finding the
solutions with a constant tensor Sij, then the following condition should be fulfilled:

sin ◊(X) ◊(X)Õ

X „(Y )Õ

Y = 1, (6.66)

so that
Sij = ai · bj. (6.67)

The variables in (6.65) are independent, and one can choose an arbitrary function for the angle
◊ and define the angle „. In particular, if ◊(X)Õ

X = 1, we will have ◊(X) = X + X0 and
„ = Y/ sin(X + X0), thus recovering the solution (3.31). If ◊(X) is an arbitrary function of
f(X), then „ = Y/ sin f(X)f(X)Õ

X , and we have the following solution for the colour unit
vector:

n
a(x̨) = {sin f(X) cos

3
Y

f
Õ(X) sin(f(X))

4
, sin(f(X)) sin

3
Y

f
Õ(X) sin(f(X))

4
, cos(f(X))}.

(6.68)
Thus the equation (6.66) defines the infinite class of solutions by choosing an arbitrary function
◊ and then obtaining „ by integration or, alternatively, by considering an arbitrary function
for „ and obtaining ◊ by integration.
We conclude that the moduli space of covariantly constant gauge fields is infinite-dimensional
because of the presence of an arbitrary function f(X).
In comparison, the moduli space Ik,N of the YM self-duality equation in the Euclidean space
has the dimension dimIk,N = 4kN for the SU(N) group.

It would be interesting to describe precisely the moduli space of the covariantly constant
gauge fields defined by (2.8) and (6.65).

7 Conclusion

Here we investigated the moduli space of the covariantly constant gauge field solutions repre-
senting the Yang-Mills classical vacuum. The identification of the moduli space of the covari-
antly constant gauge fields defined by the equation (2.8) remained unsolved for a long time.
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vector field into the whole line and define the corresponding gauge field Cµ as

Cµ = ≠ cos ◊ˆµ„ = ≠ cos ◊bµ, ≠ cos ◊ =

Y
______]

______[

... ...

x + 2 ≠ 3 Æ x Æ ≠1
x ≠ 1 Æ x Æ 1

x ≠ 2 1 Æ x Æ 3
... ...

(5.59)

The discontinuities Cµ(n ≠ ‘) ≠ Cµ(n + ‘) = ˆµ� are related by the gauge transformation
� = 2(b · x), similar to the discontinuity of the monopole field on the equator where two
patches intersect [65, 51]. In the whole space-time the corresponding field strength tensor has
the following form (see Fig.2):

Sµ‹ = ”µ1b‹ ≠ ”‹1bµ. (5.60)

As one can see, the chromomagnetic field is a regular function in the whole space (see Fig.2)
and the Hopf density is

J0 = 1
g

‘ijk(Fijbk(a · x) ≠ aibjFklxl) = 1
g

3
(̨a · H̨)(̨b · r̨) + (̨b · H̨)(̨a · r̨)

4
. (5.61)

For the field configuration H̨ = (0, 0, H), ą = (a cos —, a sin —, 0), b̨ = (0, b sin “, b cos “) we will
get the magnetic energy landscape ‘(—, “) as a function of two angles with a series of minimums
separated by potential barriers (see Fig.1):

‘ = H
2

2 ≠
1
g

Hab sin “ cos — + a
2
b

2

2g2 (cos “
2 + sin “

2 cos —
2), (5.62)

and the Hopf invariant density (5.61) is

J0 = 1
g

Hab cos “(x cos — + y sin —). (5.63)

6 General Solution

One can guess that the moduli space of covariantly constant gauge fields is much larger and
can be obtained by solving the following system of partial di�erential equations:

S12 = sin ◊(ˆ1◊ˆ2„ ≠ ˆ2◊ˆ1„)

S23 = sin ◊(ˆ2◊ˆ3„ ≠ ˆ3◊ˆ2„)

S13 = sin ◊(ˆ1◊ˆ3„ ≠ ˆ3◊ˆ1„), (6.64)

where Sij are constants. The linear combination of these equations defines the angle „ as an
arbitrary function of the variable Y = b1x+b2y+b3z+b0t, thus „ = „(Y ) = „(b1x+b2y+b3z) =

13

and express Sµ‹ in terms of spherical angles as well Sµ‹ = sin ◊(ˆµ◊ˆ‹„ ≠ ˆ‹◊ˆµ„). In this
article we are considering the solutions that have constant space components Sij and the time
components S0i and Fµ‹ equal to zero. These solutions represent pure chromomagnetic vacuum
fields, and the equation (2.8) reduces to the following system of partial di�erential equations:

S12 = sin ◊(ˆ1◊ˆ2„ ≠ ˆ2◊ˆ1„)

S23 = sin ◊(ˆ2◊ˆ3„ ≠ ˆ3◊ˆ2„)

S13 = sin ◊(ˆ1◊ˆ3„ ≠ ˆ3◊ˆ1„). (2.16)

The linear combination of these equations defines the angle „ as an arbitrary function of the
variable Y = b1x + b2y + b3z, thus „ = „(Y ) = „(b1x + b2y + b3z) = „(b · x), where bi, i = 1, 2, 3
are arbitrary real numbers. After substituting the above function into the equations (2.16) one
can observe that the angle ◊ is a function of the alternative variable X = a1x + a2y + a3z, thus
◊ = ◊(Y ) = ◊(a1x + a2y + a3z) = ◊(a · x), where ai, i = 1, 2, 3 are arbitrary real numbers as
well. It follows that the equations (2.16) reduce to the following di�erential equations:

Sij = ai · bj sin ◊(X) ◊(X)Õ

X
„(Y )Õ

Y
, (2.17)

where the derivatives are over the respective arguments. The solutions with a constant tensor
Sij should fulfil the following equation:

sin ◊(X) ◊(X)Õ

X
„(Y )Õ

Y
= 1, (2.18)

so that Sij = ai · bj. The variables in (2.17) are independent, therefore we can choose an
arbitrary function ◊ and define the function „ by integration. Let the ◊(X) be an arbitrary
function of X, then „ = Y/ sin ◊(X)◊(X)Õ

X
, and we have the following solution for the colour

unit vector (2.15):

n
a(x̨) = {sin ◊(X) cos

3
Y

◊(X)Õ sin(◊(X)

4
, sin(◊(X)) sin

3
Y

◊(X)Õ sin(◊(X))

4
, cos(◊(X))}.

(2.19)
The explicit form of the vector potential A

a

µ
can be obtained by substituting the unit colour

vector (2.19) into the (2.11), and the result is given in (2.25).
The equation defines the general solution which depends on an arbitrary function f(X).
We conclude that the moduli space of covariantly constant gauge fields is much larger than the
moduli space of flat chromomagnetic fields (2.10). In comparison, the moduli space Ik,N of
the YM self-duality equation in the Euclidean space [11] has the dimension dimIk,N = 4kN in
a given winding sector k for the SU(N) group [32, 33]. Our aim is to describe the infinite-
dimensional moduli space of the covariantly constant gauge fields defined by the equations (2.8),
(2.11) and (2.19) and investigate their physical properties.
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Figure 2: The figure demonstrates a finite part of an infinite sheet of finite thickness 2
a

in the
direction of the x axis of the solution (2.21). It is filled by parallel chromomagnetic flux tubes.
Each tube of the square area 2

a

fi

b
carries the magnetic flux 2fi

g
. The circuits show the flow of the

conserved current J
a

µ
= g‘

abc
A

b

‹
G

c

‹µ
.

constant gauge fields defined by the equations (2.8), (2.11) and (2.19) and investigate their
physical properties.
Our aim is to describe the moduli space of the covariantly constant gauge fields defined by the
equations and investigate their physical properties.

Let us consider first the particular solutions through which one can expose the essential
properties of the general solution. To obtain a particular solution in an explicit form we have
to choose the function ◊(X). Considering ◊(X) = arcsin(

Ò
1 ≠ (a · x)2) we are obtaining a

”chromomagnetic flux sheet” solution [7, 8]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.20)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|, and the corre-
sponding gauge field (2.11) has the following form:

A
a

µ
= 1

g

Y
_______]

_______[

(0, 0, 0)
a

3
sin byÔ
1≠(ax)2 , ≠

cos byÔ
1≠(ax)2 , 0

4
(ax)2

< 1

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

(0, 0, 0)

(2.21)

A
a

µ
= 0, (ax)2

Ø 1,

where ą = (a, 0, 0), b̨ = (0, b, 0). There is no energy flow from the magnetic sheet in the direction
transversal to the sheet because the Poynting vector vanishes, Ęa ◊ H̨a = 0. This solution is
similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
presence of any Higgs field (see Fig.2). This is because the magnetic flux that is defined by the
equation [15, 16]

A(L) = 1
2TrP exp (i

j

L

Akdx
k) © exp (i�B) (2.22)
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Properties of General solution 

and will define our ansatz for the unit colour vector in the following form:

n
a(x̨) =

3
sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)

4
, (3.31)

where aµ and b‹ are constant vectors and (a · x) = aµxµ, (b · x) = bµxµ. The components of
the colour field Cµ defined in (2.26) are

Cµ = aµ(b · x) cot2(a · x) ≠ bµ cot(a · x) (3.32)

and are singular on the planes aµxµ = ±fin, n = 0, 1, 2, ..... The corresponding field strength
is a constant tensor

Sµ‹ = ˆµC‹ ≠ ˆ‹Cµ = aµ · b‹ (3.33)

and is perfectly regular in the whole space. The space distance between neighbouring singu-
larities is of order 1/|̨a| and tends to zero at |̨a| æ Œ. The field strength tensor G

a
µ‹ has

contribution from two vector fields: the Abelian Bµ and colour field Cµ of the ansatz (2.18)
and has the following form:

G
a
µ‹ = (Fµ‹ + 1

g
aµ · b‹)na(x). (3.34)

The square of the field strength tensor is

1
4G

a
µ‹G

a
µ‹ = 1

4Fµ‹Fµ‹ + aµFµ‹b‹

g
+ a

2
b

2
≠ (a · b)2

2g2 . (3.35)

If the vectors aµ and b‹ are parallel, then the contribution from the space-time-dependent colour
unit vector n

a(x) will vanish, and the field strength tensor reduces to the space-independent
Abelian field Fµ‹ . The magnetic energy density can be represented in the following form:

‘ = H̨
2

2 ≠
1
g

H̨ · (̨a ◊ b̨) + 1
2g2 (̨a ◊ b̨)2

. (3.36)

The solution has a larger degeneracy because one can obtain di�erent field configurations that
have the same energy density (3.36). The minimum of ‘ is realised when the term H̨ · (̨a ◊ b̨)
gets its maximum positive value. This takes place when all three vectors (H̨, ą, b̨) are forming
the right parallelepiped, so that

‘min = H
2

2 ≠
1
g

Hab + 1
2g2 a

2
b

2
.

Let us consider the field configuration H̨ = (0, 0, H), ą = (a cos —, a sin —, 0), b̨ = (0, b sin “, b cos “)
parametrised by two angles — and “, so that the magnetic energy landscape ‘(—, “) as a function
of two angles has a series of minimums separated by potential barriers (see Fig.1):

‘(—, “) = H
2

2 ≠
1
g

Hab sin “ cos — + a
2
b

2

2g2 (cos “
2 + sin “

2 cos —
2). (3.37)
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and will define our ansatz for the unit colour vector in the following form:

n
a(x̨) =

3
sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)

4
, (3.31)

where aµ and b‹ are constant vectors and (a · x) = aµxµ, (b · x) = bµxµ. The components of
the colour field Cµ defined in (2.26) are

Cµ = aµ(b · x) cot2(a · x) ≠ bµ cot(a · x) (3.32)

and are singular on the planes aµxµ = ±fin, n = 0, 1, 2, ..... The corresponding field strength
is a constant tensor

Sµ‹ = ˆµC‹ ≠ ˆ‹Cµ = aµ · b‹ (3.33)

and is perfectly regular in the whole space. The space distance between neighbouring singu-
larities is of order 1/|̨a| and tends to zero at |̨a| æ Œ. The field strength tensor G

a
µ‹ has

contribution from two vector fields: the Abelian Bµ and colour field Cµ of the ansatz (2.18)
and has the following form:

G
a
µ‹ = (Fµ‹ + 1

g
aµ · b‹)na(x). (3.34)

The square of the field strength tensor is

1
4G

a
µ‹G

a
µ‹ = 1

4Fµ‹Fµ‹ + aµFµ‹b‹

g
+ a

2
b

2
≠ (a · b)2

2g2 . (3.35)

If the vectors aµ and b‹ are parallel, then the contribution from the space-time-dependent colour
unit vector n

a(x) will vanish, and the field strength tensor reduces to the space-independent
Abelian field Fµ‹ . The magnetic energy density can be represented in the following form:

‘ = H̨
2

2 ≠
1
g

H̨ · (̨a ◊ b̨) + 1
2g2 (̨a ◊ b̨)2

.

The solution has a larger degeneracy because one can obtain di�erent field configurations that
have the same energy density (3.36). The minimum of ‘ is realised when the term H̨ · (̨a ◊ b̨)
gets its maximum positive value. This takes place when all three vectors (H̨, ą, b̨) are forming
the right parallelepiped, so that

‘min = H
2

2 ≠
1
g

Hab + 1
2g2 a

2
b

2
.

Let us consider the field configuration H̨ = (0, 0, H), ą = (a cos —, a sin —, 0), b̨ = (0, b sin “, b cos “)
parametrised by two angles — and “, so that the magnetic energy landscape ‘(—, “) as a function
of two angles has a series of minimums separated by potential barriers (see Fig.1):

‘(—, “) = H
2

2 ≠
1
g

Hab sin “ cos — + a
2
b

2

2g2 (cos “
2 + sin “

2 cos —
2). (3.36)
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force lines are winding around each other and therefore the Hopf invariant is nonzero6 . Thus
our solution has a non-vanishing Hopf invariant density distributed over the whole space.

The conclusion is that the solution has a zero monopole charge density. It represents a
condensate of non-perturbative chromomagnetic flux tubes (vortices), which are in the form of
superposition of oppositely oriented vortices. These vortices are similar to the Nielsen-Olesen
magnetic vortices. We don’t know if solutions with nonzero magnetic monopole density exist
within the covariantly constant gauge fields. Non-vanishing of the Hopf density means that the
solution cannot be continuously deformed to a constant chromomagnetic field (2.17) and we
have a degeneracy of the classical vacuum. This degeneracy is in addition to the degeneracy
due to the nontrivial flat connections Ai = S

≠1
ˆiS, where S is the unitary matrix of a gauge

transformation that cannot be joined to the identity through the continuous transformations
[74, 75]. In the next section we will present additional solutions of the covariantly constant
field equation.

5 Chromomagnetic Flux Sheets

We found a ”chromomagnetic flux sheet” solution of the Yang-Mills equation when the unit
vector field has the following form:

n
a(x) =

3Ò
1 ≠ (a · x)2 sin(b · x),

Ò
1 ≠ (a · x)2 cos(b · x), (a · x)

4
, (5.48)

where aµ and b‹ are arbitrary constant Lorentz vectors and (a · x) = aµxµ. We can calculate
the colour field Cµ and the corresponding field strength tensor Sµ‹ defined in (2.23) and (2.26):

Cµ = bµ(a · x), Sµ‹ = aµb‹ ≠ a‹bµ © aµ · b‹ , (5.49)

so that the full field strength tensor is equal to the following expression:

G
a
µ‹ = (Fµ‹ + 1

g
aµ · b‹)na(x), (5.50)

where the tensor Fµ‹ is a constant tensor. The square of the field strength tensor is identical
to the expression (3.35) and the magnetic energy density is identical to the expression (3.36).
One can verify explicitly that the gauge field (2.18), (3.30) and (5.48) is a solution of the
Yang-Mills equation and is defined on a sheet:

(a · x)2
Æ 1. (5.51)

6
In the case of the compact space the Hopf invariant distinguishes the continuous mappings from S

3
to S

2

and is equal to the linking number of two curves (“1, “2) that are preimages of two arbitrary points of the

two-sphere. It has a topological meaning as the linking number and as the integral of the volume element on

S
3
. The Gauss’ linking integral is defined as lk(“1, “2) =

1
4fi

s
“1

dxi
s

“2
dxj‘ijk

(x≠y)k

|x≠y|3 .
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Figure 2: The graph demonstrates the space variation of the C3(x) component of the colour
field Cµ (5.59) and of the corresponding field strength tensor S13 (5.60) when ą = (1, 0, 0),
b̨ = (0, 0, 1). The coordinates y, z are not shown. The discontinuities of the C3(x) are at the
planes x = ±n, n = 0, 1, 2..., and the derivatives of the C3(x) from the l.h.s and from the
r.h.s are equal, and therefore the field strength tensor S13 is perfectly regular everywhere. The
discontinuities C3(n ≠ ‘) ≠ C3(n + ‘) = ˆz� are related by the gauge transformation � = 2z,
similar to the discontinuity of the monopole field on the equator where two gauge field patches
intersect [65, 51]. The action density (3.35) is a space constant, and the topological density
(4.44) is J0 = F12a1b3x = Hx.

Outside of the sheet (a · x)2
> 1 all fields are defined to vanish.

Let us consider the solution when Bµ = Fµ‹ = 0, so that

A
a
µ = 1

g
Á

abc
n

b
ˆµn

c
, ‘ = 1

2g2 (̨a ◊ b̨)2
. (5.52)

The solution (5.48), (5.52) is defined on a 3D-space sheet of a finite thickness, and we defined
the field n

a(x) outside of the sheet to vanish. In that case the solution represents a non-

perturbative magnetic sheet of finite thickness Ã 1/|a|. For transparency of formulas let us
consider the parameters aµ = (0, a, 0, 0) and b‹ = (0, 0, 0, b). In that case the gauge field has
the following components:

A
a
µ = 1

g

Y
_____]

_____[

(0, 0, 0)
a( cos bzÔ

1≠(ax)2 , ≠
sin bzÔ
1≠(ax)2 , 0) (ax)2

< 1
(0, 0, 0)

b

Ò
1 ≠ (ax)2(ax sin bz, ax cos bz, ≠

Ò
1 ≠ (ax)2)

(5.53)

A
a
µ = 0, (ax)2

Ø 1.

One can verify explicitly that it is a solution of the Yang Mills equation. The nonzero field
strength tensor has the following form:

G
a
13(x, z) = ab

g
{

Ò
1 ≠ (ax)2 sin(bz),

Ò
1 ≠ (ax)2 cos(bz), ax}. (5.54)

The field strength outside of the magnetic sheet vanishes. There is no energy flow from the
magnetic sheet in the direction transversal to the sheet because the Poynting vector vanishes,
Ęa ◊ H̨a = 0. This solution can be viewed as a superposition of chromomagnetic fluxes similar

11



Properties of General solution  

similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
presence of any Higgs field (see Fig.1). This is because the magnetic flux that is defined by the
equation [15, 16]

A(L) = 1
2TrP exp (i

j

L

Akdx
k) © exp (i�B) (2.20)

is equal to 2fi

g
when a closed loop L is surrounding any oriented magnetic flux tube of the

square area 2
a

fi

b
in the (x, y) plane of the solution (2.19) (see Fig.1). It will be convenient to call

the solutions (2.19 ) and (2.17) ”superfluxons” as an abbreviation of ”superposition of fluxes”.
When ◊(X) = arcsin( 1

cosh(a·x)) we will obtain ”hyperbolic” solution, which has infinite width in
the x direction compared with the finite width solution (2.18)

n
a(x) = {

Ò
1 ≠ tanh(a · x)2 cos((b·x) cosh2(a·x)),

Ò
1 ≠ tanh(a · x)2 sin((b·x) cosh2(a·x)), tanh(a·x)}.

(2.21)
Finally, when ◊(X) = (a · x), we will obtain a ”trigonometric” solution [7, 8]

n
a(x̨) = {sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)}. (2.22)

The general solution (2.17) for the vector potential A
a

µ
(2.9) depends on two coordinates X and

Y .
For the sake of transparency and compactness of the subsequent formulas we will identify

this plane with the plane (x, y). Thus we are
Let us considering the vectors aµ = (0, a, 0, 0) and b‹ = (0, 0, b, 0), so that ◊(x) = f(ax),

„(x, y) = by/f
Õ(ax) sin f(ax). The gauge field will take the following form:

A
a

µ
(x, y) = 1

g

Y
______________]

______________[

(0, 0, 0)
a

3
by

cos2
f

sin f
cos( by

f
Õ sin f

) ≠ f
Õ sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos(f) cos( by

f
Õ sin f

),

by
cos2

sin f
sin( by

f
Õ sin f

) + f
Õ cos( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos(f) sin( by

f
Õ sin f

),

≠by(cos(f) + f
ÕÕ

f
Õ2 sin(f))

4

b

f
Õ

3
≠ cos(f) cos( by

f
Õ sin f

), ≠ cos(f) sin( by

f
Õ sin f

), sin f

4
,

(0, 0, 0)

, (2.23)

where the derivatives are over the whole argument ax. One can verify explicitly that it is a
solution of the Yang Mills equation.

(see Appendix). The nonzero component of the field strength tensor G
a

µ‹
is of the following

form:
G

a

13(x) = ab

g
n

a(x, y), (2.24)

and the energy density of the chromomagnetic field is a space time constant

‘ = 1
4G

a

ij
G

a

ij
= a

2
b

2

2g2 . (2.25)
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Ò
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this plane with the plane (x, y). Thus we are
Let us considering the vectors aµ = (0, a, 0, 0) and b‹ = (0, 0, b, 0), so that ◊(x) = f(ax),

„(x, y) = by/f
Õ(ax) sin f(ax). The gauge field will take the following form:

A
a

µ
(x, y) = 1

g

Y
______________]

______________[

(0, 0, 0)
a

3
by

cos2
f

sin f
cos( by

f
Õ sin f

) ≠ f
Õ sin( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos(f) cos( by

f
Õ sin f

),

by
cos2

sin f
sin( by

f
Õ sin f

) + f
Õ cos( by

f
Õ sin f

) + by
f

ÕÕ

f
Õ2 cos(f) sin( by

f
Õ sin f

),

≠by(cos(f) + f
ÕÕ

f
Õ2 sin(f))

4

b

f
Õ

3
≠ cos(f) cos( by

f
Õ sin f

), ≠ cos(f) sin( by

f
Õ sin f

), sin f

4
,

(0, 0, 0)

, (2.23)

where the derivatives are over the whole argument ax. One can verify explicitly that it is a
solution of the Yang Mills equation.

(see Appendix). The nonzero component of the field strength tensor G
a

µ‹
is of the following

form:
G

a

13(x) = ab

g
n

a(x, y), (2.24)

and the energy density of the chromomagnetic field is a space time constant

‘ = 1
4G

a

ij
G

a

ij
= a

2
b

2

2g2 . (2.25)
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Properties of General solution  

The non-vanishing components of the conserved current J
a

µ
= g‘

abc
A

b

‹
G

c

‹µ
are5

J
a

1 = ab
2

gf
Õ

3
sin( by

sin f
), ≠ cos( by

sin f
), 0

4
; (2.26)

J
1
2 = a

2
b

g

3
f

Õ cos f cos( by

sin f
) + by cot f sin( by

sin f
) + by

f
ÕÕ

f
Õ2 sin( bz

sin f
)
4

,

J
2
2 = a

2
b

g

3
f

Õ cos f sin( by

sin f
) ≠ by cot f cos( by

sin f
) ≠ by

f
ÕÕ

f
Õ2 cos( by

sin f
)
4

,

J
3
2 = ≠

a
2
b

g
f

Õ sin f. (2.27)

One can check that ˆµJ
a

µ
= ˆxJ

a

1 + ˆyJ
a

2 = 0. Let us consider the topological properties of
the solution (2.17), (2.23). The conserved topological current and the corresponding magnetic
charge can be defined in terms of the Abelian field strength Gµ‹ (2.10) in analogy with the
definition (1.2)

Kµ = 1
2‘µ‹⁄flˆ‹G⁄fl = 1

2g
‘µ‹⁄flˆ‹S⁄fl, ˆµKµ = 0, Qm =

⁄

V

K0d
3
x, (2.28)

where Fµ‹ = 0. In terms of the tensor Sµ‹ (2.11) and of the colour unit vector n
a(x, y) (2.17),

(2.23) the topological charge will take the following equivalent forms:

K0 = 1
2g

‘ijkˆiSjk = 1
2g

‘ijkˆi(‘abc
n

a
ˆjn

b
ˆkn

c), (2.29)

Qm = 1
2g

⁄

V

‘ijk‘
abc

ˆin
a
ˆjn

b
ˆkn

c
d

3
x = 1

2g

⁄

ˆV

‘ijk‘
abc

n
a
ˆjn

b
ˆkn

c
d‡i = 1

2g

⁄

ˆV

d‡i ‘ijkSjk.

As far as the solution is homogeneous in z direction, we have to consider a topological charge
within the space volume V that is a rectangular box with its two boundaries being parallel to
the (x, y) plane at the distance L from each other and the other four boundaries will be defined
for each particular solution individually.

Let us first consider the magnetic sheet solution (2.18), (2.19). The rectangular boxes in
this case will have four boundaries given by the equations x = ±

1
a

and y = [2fi

b
k,

2fi

b
(k + 1)],

k = 0, ±1, ±2, ... Because the tensor Sij is a space constant, the total charge Qm = 0 (2.29).
For the solution (2.18) a nonzero component of the tensor Sij is S12 = ≠ab and Qm gets
contributions only from two boundaries parallel to the (x, y) plane:

Qm = 1
g

⁄

ˆV

S12d‡3 = 1
g

⁄

(x,y,0)
ab dxdy ≠

1
g

⁄

(x,y,L)
ab dxdy = qm(0) ≠ qm(L) = 0. (2.30)

Thus qm = qm(0) = qm(L), and we can define the invariant magnetic flux in terms of the surface
integral:

qm = 1
g

⁄

(x,y,0)
ab dxdy. (2.31)

5This current is conserved on the solutions of the Yang Mills equation Ò
ab
µ Gb

µ‹ = 0.
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As far as the solution is homogeneous in z direction, we have to consider a topological charge
within the space volume V that is a rectangular box with its two boundaries being parallel to
the (x, y) plane at the distance L from each other and the other four boundaries will be defined
for each particular solution individually.

Let us first consider the magnetic sheet solution (2.18), (2.19). The rectangular boxes in
this case will have four boundaries given by the equations x = ±

1
a

and y = [2fi

b
k,

2fi

b
(k + 1)],

k = 0, ±1, ±2, ... Because the tensor Sij is a space constant, the total charge Qm = 0 (2.29).
For the solution (2.18) a nonzero component of the tensor Sij is S12 = ≠ab and Qm gets
contributions only from two boundaries parallel to the (x, y) plane:

Qm = 1
g

⁄

ˆV

S12d‡3 = 1
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⁄

(x,y,0)
ab dxdy ≠

1
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⁄

(x,y,L)
ab dxdy = qm(0) ≠ qm(L) = 0. (2.30)

Thus qm = qm(0) = qm(L), and we can define the invariant magnetic flux in terms of the surface
integral:

qm = 1
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5This current is conserved on the solutions of the Yang Mills equation Ò
ab
µ Gb

µ‹ = 0.

7

The non-vanishing components of the conserved current J
a

µ
= g‘

abc
A

b

‹
G

c

‹µ
are5

J
a

1 = ab
2

gf
Õ

3
sin( by

sin f
), ≠ cos( by

sin f
), 0

4
; (2.26)

J
1
2 = a

2
b

g

3
f

Õ cos f cos( by

sin f
) + by cot f sin( by

sin f
) + by

f
ÕÕ

f
Õ2 sin( bz

sin f
)
4

,

J
2
2 = a

2
b

g

3
f

Õ cos f sin( by

sin f
) ≠ by cot f cos( by

sin f
) ≠ by

f
ÕÕ

f
Õ2 cos( by

sin f
)
4

,

J
3
2 = ≠

a
2
b

g
f

Õ sin f. (2.27)

One can check that ˆµJ
a

µ
= ˆxJ

a

1 + ˆyJ
a

2 = 0. Let us consider the topological properties of
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V
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where Fµ‹ = 0. In terms of the tensor Sµ‹ (2.11) and of the colour unit vector n
a(x, y) (2.17),

(2.23) the topological charge will take the following equivalent forms:

K0 = 1
2g

‘ijkˆiSjk = 1
2g

‘ijkˆi(‘abc
n

a
ˆjn

b
ˆkn

c), (2.29)

Qm = 1
2g

⁄

V

‘ijk‘
abc

ˆin
a
ˆjn

b
ˆkn

c
d

3
x = 1

2g

⁄

ˆV
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n
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ˆjn
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ˆkn

c
d‡i = 1

2g

⁄

ˆV

d‡i ‘ijkSjk.

As far as the solution is homogeneous in z direction, we have to consider a topological charge
within the space volume V that is a rectangular box with its two boundaries being parallel to
the (x, y) plane at the distance L from each other and the other four boundaries will be defined
for each particular solution individually.

Let us first consider the magnetic sheet solution (2.18), (2.19). The rectangular boxes in
this case will have four boundaries given by the equations x = ±

1
a

and y = [2fi

b
k,

2fi

b
(k + 1)],

k = 0, ±1, ±2, ... Because the tensor Sij is a space constant, the total charge Qm = 0 (2.29).
For the solution (2.18) a nonzero component of the tensor Sij is S12 = ≠ab and Qm gets
contributions only from two boundaries parallel to the (x, y) plane:

Qm = 1
g

⁄

ˆV

S12d‡3 = 1
g

⁄

(x,y,0)
ab dxdy ≠

1
g

⁄

(x,y,L)
ab dxdy = qm(0) ≠ qm(L) = 0. (2.30)

Thus qm = qm(0) = qm(L), and we can define the invariant magnetic flux in terms of the surface
integral:

qm = 1
g

⁄

(x,y,0)
ab dxdy. (2.31)

5This current is conserved on the solutions of the Yang Mills equation Ò
ab
µ Gb

µ‹ = 0.
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Figure 1: The figure demonstrates a finite part of an infinite sheet of finite thickness 2
a

in the
direction of the x axis of the solution (2.19). It is filled by parallel chromomagnetic flux tubes.
Each tube of the square area 2

a

fi

b
carries the magnetic flux 2fi

g
. The circuits show the flow of the

conserved current J
a

µ
= g‘

abc
A

b

‹
G

c

‹µ
.

infinite-dimensional space of solutions, because they depend on an arbitrary function ◊(X).
We conclude that the moduli space of covariantly constant gauge fields is infinite-dimensional

and is much larger than the moduli space of flat chromomagnetic fields (2.8). In comparison,
the moduli space Ik,N of the YM self-duality equation in the Euclidean space [11] has the
dimension dimIk,N = 4kN in a given winding sector k for the SU(N) group [32, 33]. Our
aim is to describe the infinite-dimensional moduli space of the covariantly constant gauge fields
defined by the equations (2.6), (2.9) and (2.17) and investigate their physical properties.

Let us consider first the particular solutions through which one can expose the essential
properties of the general solution. To obtain a particular solution in an explicit form we have
to choose the function ◊(X). Considering ◊(X) = arcsin(

Ò
1 ≠ (a · x)2) we are obtaining a

”chromomagnetic flux sheet” solution [7, 8]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.18)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|, and the corre-
sponding gauge field (2.9) has the following form:

A
a

µ
= 1

g

Y
_______]

_______[

(0, 0, 0)
a

3
sin byÔ
1≠(ax)2 , ≠

cos byÔ
1≠(ax)2 , 0

4
(ax)2

< 1

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

(0, 0, 0)

(2.19)

A
a

µ
= 0, (ax)2

Ø 1,

where ą = (a, 0, 0), b̨ = (0, b, 0). There is no energy flow from the magnetic sheet in the direction
transversal to the sheet because the Poynting vector vanishes, Ęa ◊ H̨a = 0. This solution is
similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
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Figure 1: The figure demonstrates a finite part of an infinite sheet of finite thickness 2
a

in the
direction of the x axis of the solution (2.19). It is filled by parallel chromomagnetic flux tubes.
Each tube of the square area 2
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b
carries the magnetic flux 2fi

g
. The circuits show the flow of the

conserved current J
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infinite-dimensional space of solutions, because they depend on an arbitrary function ◊(X).
We conclude that the moduli space of covariantly constant gauge fields is infinite-dimensional

and is much larger than the moduli space of flat chromomagnetic fields (2.8). In comparison,
the moduli space Ik,N of the YM self-duality equation in the Euclidean space [11] has the
dimension dimIk,N = 4kN in a given winding sector k for the SU(N) group [32, 33]. Our
aim is to describe the infinite-dimensional moduli space of the covariantly constant gauge fields
defined by the equations (2.6), (2.9) and (2.17) and investigate their physical properties.

Let us consider first the particular solutions through which one can expose the essential
properties of the general solution. To obtain a particular solution in an explicit form we have
to choose the function ◊(X). Considering ◊(X) = arcsin(

Ò
1 ≠ (a · x)2) we are obtaining a

”chromomagnetic flux sheet” solution [7, 8]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.18)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|, and the corre-
sponding gauge field (2.9) has the following form:

A
a

µ
= 1

g

Y
_______]

_______[

(0, 0, 0)
a

3
sin byÔ
1≠(ax)2 , ≠

cos byÔ
1≠(ax)2 , 0

4
(ax)2

< 1

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

(0, 0, 0)

(2.19)

A
a

µ
= 0, (ax)2

Ø 1,

where ą = (a, 0, 0), b̨ = (0, b, 0). There is no energy flow from the magnetic sheet in the direction
transversal to the sheet because the Poynting vector vanishes, Ęa ◊ H̨a = 0. This solution is
similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
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Figure 2: The figure demonstrates a finite part of an infinite sheet of finite thickness 2
a

in the
direction of the x axis of the solution (2.21). It is filled by parallel chromomagnetic flux tubes.
Each tube of the square area 2

a
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b
carries the magnetic flux 2fi

g
. The circuits show the flow of the

conserved current J
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A
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‹
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constant gauge fields defined by the equations (2.8), (2.11) and (2.19) and investigate their
physical properties.
Our aim is to describe the moduli space of the covariantly constant gauge fields defined by the
equations and investigate their physical properties.

Let us consider first the particular solutions through which one can expose the essential
properties of the general solution. To obtain a particular solution in an explicit form we have
to choose the function ◊(X). Considering ◊(X) = arcsin(

Ò
1 ≠ (a · x)2) we are obtaining a

”chromomagnetic flux sheet” solution [7, 8]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.20)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|,
and the corresponding gauge field has the following form:

A
a

µ
= 1

g

Y
_______]

_______[

(0, 0, 0)
a

3
sin byÔ
1≠(ax)2 , ≠

cos byÔ
1≠(ax)2 , 0

4
(ax)2

< 1

b

Ò
1 ≠ (ax)2

3
≠ ax cos by, ≠ax sin by,

Ò
1 ≠ (ax)2

(0, 0, 0)

(2.21)

A
a

µ
= 0, (ax)2

Ø 1,

where ą = (a, 0, 0), b̨ = (0, b, 0). There is no energy flow from the magnetic sheet in the direction
transversal to the sheet because the Poynting vector vanishes, Ęa ◊ H̨a = 0. This solution is
similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
presence of any Higgs field (see Fig.2). This is because the magnetic flux that is defined by the
equation [15, 16]

A(L) = 1
2TrP exp (i

j

L

Akdx
k) © exp (i�B) (2.22)
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Figure 2: The figure demonstrates a finite part of an infinite sheet of finite thickness 2
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direction of the x axis of the solution (2.21). It is filled by parallel chromomagnetic flux tubes.
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constant gauge fields defined by the equations (2.8), (2.11) and (2.19) and investigate their
physical properties.
Our aim is to describe the moduli space of the covariantly constant gauge fields defined by the
equations and investigate their physical properties.

Let us consider first the particular solutions through which one can expose the essential
properties of the general solution. To obtain a particular solution in an explicit form we have
to choose the function ◊(X). Considering ◊(X) = arcsin(

Ò
1 ≠ (a · x)2) we are obtaining a

”chromomagnetic flux sheet” solution [7, 8]

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x),

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.20)

which represents a non-perturbative magnetic sheet of a finite thickness 2/|a|,
and the corresponding gauge field has the following form:
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where ą = (a, 0, 0), b̨ = (0, b, 0). There is no energy flow from the magnetic sheet in the direction
transversal to the sheet because the Poynting vector vanishes, Ęa ◊ H̨a = 0. This solution is
similar to the superposition of the Nielsen-Olesen magnetic flux tubes and is supported without
presence of any Higgs field (see Fig.2). This is because the magnetic flux that is defined by the
equation [15, 16]

A(L) = 1
2TrP exp (i

j

L

Akdx
k) © exp (i�B) (2.22)
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1 Introduction

Covariantly constant gauge fields are solutions of the sourceless Yang-Mills equation and repre-
sent classical vacuum fields [1, 2, 3, 4, 5]. We found that the moduli space of covariantly constant
gauge fields is infinite-dimensional. The solutions represent non-perturbative chromomagnetic
flux tubes (vortices) similar in their form to superposed Nielsen-Olesen chromomagnetic vor-
tices [6] uniformly distributed over the whole space [7, 8]. These gauge field configurations
are stretched along the potential valleys of a constant energy density and are separated by
potential barriers between classically degenerate vacua that are forming a complicated poten-
tial landscape of the QCD vacuum. It is suggested that the solutions describe the condensate
of chromomagnetic vortices of opposite magnetic charges and represent a dual analog of the
Cooper pairs condensate in a superconductor. This consideration leads to a description of the
vacuum state of a Yang-Mills theory as having richer topological structure than previously
thought.

It is known that the vacuum state of the Yang Mills theory has a reach topological structure
and as a result the quantised gauge theory is specified by a gauge group and a ◊-angle [9, 10,
11, 12]. The additional Chern-Pontryagin ◊-angle term is Lorentz invariant, but breaks the
CP invariants so that the distinct ◊ vacuum states correspond to distinct theories [9, 10, 12].
This topological e�ect appeared due to the presence of gauge field configurations that cannot
be continuously joined with the identity transformation [11]. These field configurations Ąn(x̨)
(2.41) have zero potential energies and are separated by potential barriers (2.42) shown in
Fig.4. Due to the instanton tunnelling transitions between degenerate zero energy vacua the
corresponding states Ân(Ą) and Ân+1(Ą) are in a quantum-mechanical superposition �◊(Ą) =
q

n e
in◊

Ân(Ą) representing the ◊ vacuum state [9, 10, 12].
The other aspect of topological phenomenon inherent to Yang Mills theory is the existence

of ’t Hooft-Polyakov monopole solution in SU(2) gauge field theory which is spontaneously
broken by the adjoint scalar field „a, a = 1, 2, 3 that has nonzero vacuum expectation value v

[13, 14, 15, 16, 17, 18, 19]. The charged bosons W
±

µ
get nonzero masses, while the neutral field

A
3
µ

remains massless.
The electromagnetic field strength is defined by ’t Hooft as

Gµ‹ = n
a
G

a

µ‹
+ 1

g
‘

abc
n

a
Òµn

b
Ò‹n

c
© ˆµA‹ ≠ ˆ‹Aµ + 1

g
‘

abc
n

a
ˆµn

b
ˆ‹n

c
, n

a = „
a

|„|
, (1.1)

where Òµn
a = ˆµn

a
≠ g‘

abc
A

b

µ
n

c, Aµ = A
a

µ
n

a and n
a is a unit colour vector. It reduces

to Gµ‹ = ˆµA
3
‹

≠ ˆ‹A
3
µ

in the space regions where the scalar field is in the third direction
na = (0, 0, 1) and the Abelian field Aµ does not have Dirac string singularities.

1

Comparison with the ’t Hooft Polyakov monopole solution   

location of zero value of the scalar field is a solution of the equations „1(x) = „2(x) = „3(x) = 0
that are defining a point in three dimensional space. The appearance of zero value of the scalar
field indicates the existence and the location of a monopole in this theory. This conclusion
follows from
the expression of the topologically conserved current is

Kµ = 1
2‘µ‹⁄flˆ‹G⁄fl = 1

2g
‘µ‹⁄fl‘

abc
ˆ‹n

a
ˆ⁄n

b
ˆfln

c
, ˆµKµ = 0. (1.2)

The ’t Hooft-Polyakov solution has the following form:

„
a = u(r)na

, A
a

i
= ‘

aij
n

j
a(r)

and has the following asymptotic properties

u(0) = 0, a(0) = 0, u(r) æ
ræŒ

m

⁄
, a(r) æ

ræŒ
≠

1
gr

so that the scalar field „
a vanishes at x

a = 0. As a result the corresponding topological density
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Properties of General solution - Magnetic Fluxes  

Figure 2: The figure shows mapping (2.18) n
a(x, y) = {

Ô
1 ≠ x2 cos(y),

Ô
1 ≠ x2 sin(y), x} of a

cylinder sell C
2
0 on the plane (x, y) to the sphere S

2
0 . The mapping of the cylinder boundaries

x = ±1 to the north and south poles is given by the formula n
a(±1, y) = (0, 0, ±1), where

y œ [0, 2fi]. The lines L1,2 are identified on a sphere due to the formula n
a(x, 0) = n

a(x, 2fi) =
(
Ô

1 ≠ x2, 0, x), where x œ [≠1, 1]. Each sell C
2
k

defines a magnetic vortex of a positive magnetic
charge (2.32).

The vector n
a(x, y) in (2.18) defines a mapping of the cylinders C

2
k

: (x ◊ y) œ [≠ 1
a
,

1
a
] ◊

[2fi

b
k,

2fi

b
(k + 1)], k = 0, ±1, ±2, ... into the spheres S

2
k
, as it is shown in Fig.2. After integrating

over a given cylinder C
2
k

of the area —x—y = (4fi/ab) one can see that the mapping n
a(x, y)

covers each sphere S
2
k

only once, and the associated magnetic charge of this vortex in z direction
is

gm(k) = 1
g

⁄ 1
a

≠
1
a

dax

⁄ 2fi
b (k+1)

2fi
b k

dby = 4fi

g
. (2.32)

All magnetic charges gm(k) have the same sign. Considering the alternative solution

n
a(x) = {

Ò
1 ≠ (a · x)2 cos(b · x), ≠

Ò
1 ≠ (a · x)2 sin(b · x), (a · x)}, (2.33)

one can get convinced that this solution has the opposite magnetic charges:

gm(k) = ≠
4fi

g
. (2.34)

Turning to the trigonometric solution (2.22) one can find that here the cylinders have more
complicated transversal structure C

2
k

: (x ◊ y) œ [2fi

a
k,

2fi

a
(k + 1)] ◊ [0, ±– sin(ax)/b], where

k = 0, ±1, ..., – œ [0, 2fil], l = 0, ±1, ±2, ..., as it is shown in Fig. 3. The important new
property of this solution is that the magnetic fluxes have alternating magnetic charges. A similar
pattern takes place for the general solution (2.17), where the corresponding cylinders are defined
by the equations f(ax) = (0, 2fik) and y = (0, 2filf

Õ(ax) sin f(ax)/b). The magnetic flux tubes
(vortices) are parallel to each other, and the chromomagnetic fields inside the neighbouring
tubes (vortices) are oriented in the opposite directions. In a sense the solution describes a
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!" = ∫
#3

$3%&0 =
1 
2! ∫

'2

$2()*)+,*-./0-1+0.1,0/ =
42
!

(1.3)

and it is also equal to the magnetic flux of a single monopole solution 3-
) → 
4→∞

−*-)+%+∕!42:

5) =
%)
!43

,  !" = ∫ 5)$') =
42
!
. (1.4)

The monopole charge !" is characterised by a topological degree (1.3) and by a total magnetic flux (1.4). A similar consideration is valid for the 
Nielsen-Olesen magnetic vortex solution in the Abelian-Higgs model [15–17]. The magnetic monopoles and magnetic vortices emerge as physical objects 
exhibiting themselves through the zeros of the scalar field and the associated singularities [1]. The lesson that follows from the above discussion is that one 
can trace the existence of new magnetic structures in the pure Yang-Mills theory by investigating possible singularities of the gauge fields [3–13].

We shall demonstrate that in the pure Yang Mills theory the field strength tensor can have the same structure as in the Yang-Mills-Higgs model 
(1.1) but now the role of the unit colour vector field 0-(%) is not connected with any scalar field but instead with the Yang Mills field itself. The 
nontrivial topological field configurations of the gauge field and their singularities can be found by considering the solutions of the covariantly 
constant field equation [18–24]. The exact solutions of the sourceless Yang Mills equation have nontrivial topological structure and singularities 
that are distributed over two-dimensional sheets and cylinders representing a lattice of superposed magnetic vortices [23,24]. The location of field 
singularities is invariant with respect to the continuous gauge transformations and characterises the moduli space of the solutions.

The solutions represent non-perturbative chromomagnetic vortices, the flux tubes similar in their structure to superposed Nielsen-Olesen magnetic 
vortices [15] uniformly distributed over the whole space [23,24]. These gauge field configurations are stretched along the potential valleys of a 
constant energy density and are separated by potential barriers forming a complicated potential landscape. It is suggested that the solutions describe 
the condensate of chromomagnetic vortices of oppositely oriented magnetic fluxes representing a dual analog of the Cooper pairs condensate in a 
superconductor. This consideration leads to a description of the vacuum state of the Yang-Mills theory as having a richer topological structure than 
previously thought.

2. General solution of covariantly constant gauge field equation

The covariantly constant gauge fields are defined by the equation [18–22]

∇-.
6 7.

89 = 0, (2.5)
where 7-

89 = 183-
9 − 193-

8 − !:-./3.
83

/
9 , ∇-.

8 (3) = ;-.18 − !:-/.3/
8 and are the solutions of the sourceless Yang-Mills equation ∇-.

8 7.
89 = 0 as well.2

Here we will consider the '< (2) algebra, the consideration can be extended to other algebras as well. By taking the covariant derivative ∇/-
= of the 

l.h.s. (2.5) and interchanging the derivatives one can get [7=6 ,789] = 0, which means that the field strength tensor factorises into the product of 
Lorentz tensor and colour unit vector in the direction of the Cartan’s sub-algebra:

7-
89(%) =789(%)0-(%). (2.6)

Both fields can depend on the space-time coordinates. The well known solution of (2.5) has the following form [18–22]:

3-
8 = −1

2>89%90-, (2.7)
where >89 and 0- are space-time independent parameters, 0-0- = 1. It is convenient to call this solution as a “constant Abelian chromomagnetic 
field” 3 because 0- is a constant colour vector. The general solutions of the equation (2.5) were found recently in [23,24]. The new solutions can be 
obtained through the nontrivial space-time dependence of the unit vector 0-(%). Considering the Ansatz [1,26–30,23,24]

3-
8 =?80- +

1 
!
:-./0.180/ , (2.8)

where ?8(%) is the Abelian Lorentz vector and 0-(%) is a space-time dependent colour unit vector 0-0- = 1, 0-180- = 0, one can observe that the 
field strength tensor factorises [26,27]:

7-
89 = (>89 +

1 
!
'89)  0- ≡789(%)  0-(%), (2.9)

where

>89 = 18?9 − 19?8 ,  '89 = :-./0-180.190/ . (2.10)
This form of the field strength tensor 789 (%) is identical to the ‘t Hooft form of the field strength tensor (1.1) as well as to the factorisation form 
(2.6) of the covariantly constant field strength tensor. It is therefore natural to search solutions of (2.5) in the form (2.8). In that case (2.5) reduces 
to the following equation:

16(>89 +
1 
!
'89) = 0, (2.11)

meaning that the sum of the terms in the brackets should be a constant tensor: 789 = >89 +
1 
! '89 . It is useful to parametrise the unit vector in terms 

of spherical angles:

2 The effective Lagrangian is gauge invariant only on sourceless-vacuum fields [18,25].
3 The solution has six parameters >89 , four translations %9 → %9 + %09 and two parameters 0- in the case of '< (2) group.
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Figure 2: The figure shows mapping (2.23) n
a(x, y) = {

Ô
1 ≠ x2 cos(y),

Ô
1 ≠ x2 sin(y), x} of a

cylinder cell C
2
0 on the plane (x, y) to the sphere S

2
0 . The mapping of the cylinder boundaries

x = ±1 to the north and south poles is given by the formula n
a(±1, y) = (0, 0, ±1), where

y œ [0, 2fi]. The lines L1,2 are identified on a sphere due to the formula n
a(x, 0) = n

a(x, 2fi) =
(
Ô

1 ≠ x2, 0, x), where x œ [≠1, 1]. Each cell C
2
k

defines magnetic fluxes in the z direction (3.33).

3 Topological properties of the solution
Let us consider the topological properties of the solution (2.17), (2.19). The conserved topo-
logical current and the corresponding magnetic charge can be defined in terms of the Abelian
field strength Gµ‹ (2.9) in analogy with the definition (1.2)

Kµ = 1
2‘µ‹⁄flˆ‹G⁄fl = 1

2g
‘µ‹⁄flˆ‹S⁄fl, ˆµKµ = 0, Qm =

⁄

V

K0d
3
x. (3.29)

Here and in the next section we are considering the case of vanishing Abelian field Fµ‹ = 0.
In terms of the tensor Sµ‹ (2.10) and of the colour unit vector n

a (2.17) the topological charge
will take the following equivalent forms:

K0 = 1
2g

‘ijkˆiSjk = 1
2g

‘ijkˆi(‘abc
n

a
ˆjn

b
ˆkn

c), (3.30)

Qm = 1
2g

s
V

‘ijk‘
abc

ˆin
a
ˆjn

b
ˆkn

c
d

3
x = 1

2g

s
ˆV

‘ijk‘
abc

n
a
ˆjn

b
ˆkn

c
d‡i = 1

2g

s
ˆV

d‡i ‘ijkSjk.

As far as the solution is homogeneous in the z direction, we have to consider a magnetic flux
through the space volume V that is a rectangular box with its two boundaries being parallel
to the (x, y) plane at the distance L from each other, and the other four boundaries will be
defined for each particular solution individually.

Let us first consider the magnetic sheet solution (2.23), (2.24). The rectangular boxes in
this case will have four boundaries given by the equations x = ±

1
a

and y = [2fi

b
k,

2fi

b
(k + 1)],

k = 0, ±1, ±2, ... Because the tensor Sij is a space constant, the total charge Qm = 0 (3.30).
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Landscape of Yang Mills theory vacuum   

the flat chromomagnetic field of the form (2.8)

A
Õ3
1 = ≠

ab

g
y, G

Õ3
12 = ab

g
, ‘ = a

2
b

2

2g2 . (2.37)

Thus we obtained the gauge configurations (2.23) and (2.36),(2.37) that are connected by a
singular gauge transformations and have the identical constant chromomagnetic energy density
(2.25). The question is: Should these field configurations be counted as physically identical
or distinguishable in the functional integral over gauge field configurations? The gauge-fixing
procedure removes from the functional integral the gauge field configurations which can be
joined by a continuous gauge transformation. But if the gauge fields cannot be obtained
from each other by gauge transformations which can be continuously joined by the identity
transformation, then these gauge fields configurations, although gauge equivalent, should not
be removed from the integrations over the field configurations by the gauge fixing procedure
[9, 10]. In particular, the topologically distinguishable Chern-Pontryagin configurations are
divided into several topologically inequivalent sectors separated by periodic potential barriers
[9, 10, 12].

In our case as well the covariantly constant vacuum field configurations have di�erent topo-
logical structure and cannot be transformed into each other by nonsingular continuous gauge
transformations, and we will demonstrate that they are separated by the potential barriers as
well. Let us consider an arbitrary path w(–) that joins the field configurations (2.23) and (2.36)
and calculate the corresponding magnetic energy density. To exemplify this, let us multiply
the potential of (2.23) by the factor w(1

2 ≠ –) and the potential (2.36) by the factor w(1
2 + –)

requiring that the w(0) = 0 and w(1) = 1, when – increases from ≠
1
2 to +1

2 :

Â
a

0 = w(1
2 ≠ –)Aa

0
Â

a

1 = w(1
2 ≠ –)Aa

1 +w(1
2 + –)AÕ

a

1
Â

a

2 = w(1
2 ≠ –)Aa

2
Â

a

3 = w(1
2 ≠ –)Aa

3 +w(1
2 + –)AÕ

a

3 .

(2.38)

These factors define a path w(–) that connects two vacuum field configurations (2.23) and (2.36)
and allows to investigate the energy landscape of covariantly constant gauge fields configurations
by calculating the magnetic energy along this path, when – = ≠

1
2 the Â

a

µ
coincides with A

a

µ
and

when – = 1
2 it coincides with A

Õ
a

µ
. After substituting the field (2.38) into the energy density

functional ‘ = 1
4G

a

ij
G

a

ij
we will get the following shape of the potential barrier (see Appendix):

‘(x, –) = a
2
b

2

2g2

3
(2 ≠ w≠)2

w
2
≠

+ w
2
+ + 2(2 ≠ w≠)w≠(1 + w≠)w+ cos f(ax) + w

2
≠

w
2
+

sin2
f(ax)

4
, (2.39)

where w≠ © w(1
2 ≠–) and w+ © w(1

2 +–). The barrier is homogeneous in y and z directions. The
–-dependent coe�cients are positive definite, and the profile of the barrier between superfluson
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2 +–). The barrier is homogeneous in y and z directions. The
–-dependent coe�cients are positive definite, and the profile of the barrier between superfluson
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potential (4.38) into a constant Abelian chromomagnetic field of the form (2.7):

A
ÕÕ3
1 = gH ≠ ab

g
y, A

Õ3
2 = 0, G

ÕÕ3
12 = ab ≠ gH

g
, ‘ = (gH ≠ ab)2

2g2 . (4.39)

The gauge configurations (2.19), (2.20) and (4.38), (4.39) are connected by a singular gauge
transformation (4.37) and have the same chromomagnetic energy densities (2.21) and (4.38),
(4.39). The question is: Should these field configurations be counted as physically identical or
distinguishable in the functional integral over gauge field configurations? The gauge-fixing pro-
cedure removes from the functional integral the gauge field configurations which can be joined
by a continuous gauge transformation. But if the gauge fields cannot be obtained from each
other by gauge transformations which can be continuously joined by the identity transforma-
tion, then these gauge field configurations, although gauge equivalent, should not be removed
from the integrations over the field configurations by the gauge fixing procedure, as it was
discussed by Jackiw and Rebbi [62, 63]. In particular, the topologically distinguishable Chern-
Pontryagin configurations are divided into several topologically inequivalent sectors separated
by potential barriers [62, 63, 64].

The covariantly constant gauge field configurations are also divided into several topologically
inequivalent sectors and are separated by potential barriers. Let us consider an arbitrary
path w(–) that joins the field configurations (2.19) and (4.38) and calculate the corresponding
magnetic energy density. To exemplify this, let us multiply the potential of (2.19) by the factor
w(1

2 ≠ –) and the potential (4.38) by the factor w(1
2 + –) requiring that the w(0) = 0 and

w(1) = 1, when – increases from ≠
1
2 to +1

2 :

Â
a

µ
= w(1

2 ≠ –)Aa

µ
+ w(1

2 + –)AÕ
a

µ
. (4.40)

These factors define a path w(–) that connects field configurations (2.19) and (4.38) and al-
lows to investigate the energy landscape of covariantly constant gauge fields configurations by
calculating the magnetic energy along this path, when – = ≠

1
2 the Â

a

µ
coincides with A

a

µ
and

when – = 1
2 it coincides with A

Õ
a

µ
. After substituting the field (4.40) into the energy density

functional ‘ = 1
4G

a

ij
G

a

ij
we will get the following shape of the potential barrier9:

‘(x, –) = a
2
b

2

2g2

3
(2 ≠ w≠)2

w
2
≠

+ 2(2 ≠ w≠)w≠(1 + w≠)w+ cos f + (1 + w
2
≠

cot2
f)w2

+

4
, (4.41)

where w≠ © w(1
2 ≠–) and w+ © w(1

2 +–). The barrier is homogeneous in y and z directions. The
profile of the potential barrier between superfluson (2.19) at H = 0 and the flat configuration
(4.38) depend on the behaviour of cos f(ax) and 1

sin2 f(ax) and of the moduli parameter f(ax).

9
We present a compact expression when the Abelian component Fµ‹ = 0, otherwise the expression is larger.
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Figure 4: The l.h.s. graph shows the shape of the barrier ‘(x, –) (2.40) when – parameter
changes in the interval [≠1

2 , 0]. At – = ≠
1
2 the energy density (2.25) is equal to ‘ = 1/2

(a = b = g = 1). As – increases, the hight of the barrier increases and reaches its maximum
at – = 0, then it symmetrically decreases until – = 1

2 , where it again is equal to ‘ = 1/2. The
r.h.s graph shows the shape of the potential barrier (2.42) between the Chern-Pontryagin vacua
(2.41).

(2.23) and the flat configuration (2.36) depend on the behaviour of cos f(ax) and 1
sin2 f(ax) . It

follows that ‘ = a
2
b

2

2g2 at – = ±1/2 in accordance with the energy density (2.25), (2.37) for
both vacuum field configurations. The trigonometric expressions are the function of the moduli
parameter f(ax) of the superfluson solution (2.23), and we have a potential barrier between
superfluson configuration (2.23) and a flat chromomagnetic configuration (2.37). If w(–) is a
linear functional of its argument w = 1

2 ≠ –, then we will get6

‘(x, –) = a
2
b

2

32g2

3
13≠8–+8–

2+36–
3+16–

4+(18≠80–
2+32–

4) cos f(ax)+ (1 ≠ 4–
2)2

sin2
f(ax)

4
. (2.40)

For a particular solution the potential barrier is shown in Fig.4. In order to compare the above
consideration with a topological e�ect that appeared due to the presence of gauge field config-
urations that have non-vanishing Chern-Pontryagin index one can consider the flat connections
defined in [9, 10]:

Ąn(x̨) = i

g
U

≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
≠ 2i⁄‡̨x̨

x̨2 + ⁄2 , Un = U
n

1 . (2.41)

The values of the gauge field (2.41), although gauge equivalent to Ą(x) = 0, are not removed
from the integration over the field configurations by gauge fixing procedure because they belong
to di�erent topological classes and are separated by potential barriers [9, 10, 12]. The appear-
ance of potential barriers between these zero energy troughs can be observed by calculating
the magnetic energy of the field configuration Ą

Õ
1 (x̨) = (1

2 ≠ –)Ą1(x̨) when – is continuously
varying from ≠

1
2 to 1

2 . This path connects two minima Ą(x) = 0 and Ą1(x) of the magnetic
6There is no potential barrier between A

Õa
µ and A

ÕÕa
µ fields, and therefore they should not be considered as

physically di�erent fields.
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The values of the gauge field (2.41), although gauge equivalent to Ą(x) = 0, are not removed
from the integration over the field configurations by gauge fixing procedure because they belong
to di�erent topological classes and are separated by potential barriers [9, 10, 12]. The appear-
ance of potential barriers between these zero energy troughs can be observed by calculating
the magnetic energy of the field configuration Ą

Õ
1 (x̨) = (1

2 ≠ –)Ą1(x̨) when – is continuously
varying from ≠
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2 to 1

2 . This path connects two minima Ą(x) = 0 and Ą1(x) of the magnetic
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energy density through the potential barrier of the shape

‘(r, –) = 1
4G

a

ij
G

a

ij
= 6⁄

4(1 ≠ 4–
2)

g2(r2 + ⁄2)4 (2.42)

shown in Fig.4. In the quantum theory tunneling will occur across this barrier. The physical
implication of the instanton induced tunnelling transition is that the quantal description of the
vacuum state cannot be limited to fluctuations around any definite classical configuration of
zero energy (2.41) and the quantum-mechanical superposition �◊(Ą) = q

n e
in◊

Ân(Ą) represents
the Yang Mills ◊ vacuum state [9, 10].

The existence of an even larger class of covariantly constant gauge fields described above
pointed out to the fact that the Yang-Mills vacuum has even higher degeneracy of vacuum field
configutations. Each covariantly constant gauge field configuration on its own contains a rich
diversity of emergent nonperturbative structures, and it is a challenging problem to investi-
gate possible tunneling transitions between these highly degenerate states and to calculate the
vacuum polarisation induced by the new class of covariantly constant gauge fields. The early
investigation of the Yang-Mills vacuum polarisation induced by covariantly constant gauge field
[1, 2, 3] revealed that the e�ective Lagrangian of the SU(N) Yang-Mills theory has the following
gauge and Lorentz invariant form:

L = ≠F ≠
11N

96fi2 g
2
F

3
ln 2g

2
F

µ4 ≠ 1
4

, (2.43)

where F = 1
4G

a

µ‹
G

a

µ‹
= H̨

2
a≠Ę

2
a

2 Ø 0 and G = 1
4G

a

µ‹
G̃

a

µ‹
= H̨aĘa = 0, and that the vacuum energy

density has its new minimum at a nonzero value of the field strength [2]:

È2g
2
FÍvac = µ

4 exp (≠ 96fi
2

11Ng2(µ)) = �4
S
, ‘vac = ≠

11N

192fi2 �4
S
. (2.44)

We conjecture that the e�ective Lagrangian for the general covariantly constant gauge fields has
a universal form (2.43) and that the tunneling process between degenerate vacuum field config-
urations (2.45) restores the Lorentz invariance of the vacuum state. A quasiclassical description
of the tunneling transitions can be understood in terms of averaging over the superfluson field
orientations. The general solution (2.17) includes two moduli vectors ą and b̨ which are defining
the orientation of the field configuration in 3d-space. This orientation is defined by the two
angles (—, “)

◊(X) = ◊(̨a · x̨) = ◊(|̨a||x̨| cos —), „(Y ) = „(̨b · x̨) = „(|̨b||x̨| cos “). (2.45)

and the path integral over the vacuum gauge fields configurations should include the integration
over these angles providing the Lorentz invariant description of the vacuum state.
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The CP violating topological e�ect appeared due to the presence of vacuum gauge field
configurations that have non-vanishing Chern-Pontryagin index [65, 62, 63, 64]:

Ąn(x̨) = ≠
i

g
U

≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
≠ 2i⁄‡̨x̨

x̨2 + ⁄2 , Un = U
n

1 . (5.50)

The values of the gauge field (5.50), although gauge equivalent to Ą(x) = 0, are not removed
from the integration over the field configurations by gauge fixing procedure because they belong
to di�erent topological classes and are separated by potential barriers [65, 62, 63, 64]. The
potential barriers can be calculated between these field configurations considering Ą

Õ
1 (x̨) =

(1
2 ≠ –)Ą1(x̨) when – is continuously varying from ≠

1
2 to 1

2 . The potential barrier has the
following shape

‘(r, –) = 1
4G

a

ij
G

a

ij
= 6⁄

4(1 ≠ 4–
2)

g2(r2 + ⁄2)4 (5.51)

shown in Fig.4. In the quantum theory tunnelling will occur across this barrier and the
quantum-mechanical superposition �◊(Ą) = q

n e
in◊

Ân(Ą) represents the Yang Mills ◊ vac-
uum state [62, 63]. The induced Chern-Pontryagin ◊-angle term is Lorentz invariant, but
breaks the CP invariants, so that the distinct ◊ vacuum states correspond to distinct theories
[65, 62, 63, 64].

We do not know yet whether there exist the instanton-like transitions that would induce
a tunnelling between vacuum configurations with nonzero Pontryagin index (5.50) and the
”superfluxon” vacuum configurations (5.45), (5.46). A possible tunnelling transition between
superfluxon flat configurations and the flat configurations with non-vanishing Chern-Pontryagin
index (5.50 ) will wash out the CP violating ◊ angle to zero, dynamically restoring CP symmetry.

6 Vacuum polarisation
The existence of an even larger class of covariantly constant gauge field configurations pointed
out to the fact that the Yang-Mills vacuum has even larger degeneracy of vacuum field config-
urations11. It is a challenging problem to investigate the vacuum polarisation induced by the
new class of covariantly constant gauge fields. The early investigation revealed that the e�ec-
tive Lagrangian of the SU(N) Yang-Mills theory has the following gauge and Lorentz invariant
form:

L = ≠F ≠
11N

96fi2 g
2
F

3
ln 2g

2
F

µ4 ≠ 1
4

, (6.52)

11
The Ising spin system that has an exponential degeneracy of its vacuum configurations was discovered in

[66]. Here the parallel planes of di�erently oriented spin configurations represent the degenerate vacuum spin

configurations which are separated by potential barriers [67]. The total number of such vacuum configurations

is 3 ◊ 2
N

or 2
3N

if k = 0 [67, 68, 69, 70, 71, 72]. In recent publications this symmetry was referred to as the

subsystem symmetry, and it has exotic fracton excitations [73, 74, 75].
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Figure 4: The l.h.s. graph shows the shape of the barrier ‘(x, –) (4.42) when – parameter
changes in the interval [≠1

2 , 0]. At – = ≠
1
2 the energy density (2.21) is equal to ‘ = 1/2

(a = b = g = 1). As – increases, the hight of the barrier increases and reaches its maximum
at – = 0, then it symmetrically decreases until – = 1

2 , where it again is equal to ‘ = 1/2. The
r.h.s graph shows the shape of the potential barrier (5.51) between the Chern-Pontryagin vacua
(5.50).

It follows that ‘(x, ±1/2) = a
2
b

2

2g2 in accordance with the energy densities (2.21)) at H = 0 and
(4.38). If w(–) is a linear functional of its argument w(–) = –, then we will get10

‘(x, –) = a
2
b

2

32g2

3
12 ≠ 8– + 16–

2 + 36–
3 + (18 ≠ 80–

2 + 32–
4) cos f(ax) + (1 ≠ 4–

2)2

sin2
f(ax)

4
. (4.42)

For a particular solution f(ax) the potential barrier is shown in Fig.4.

5 Potential barriers between vacuum solutions
New phenomena appear in the case of non-vanishing Abelian field Bi = ≠

1
2Fijxj in (2.8), (2.10).

The solutions (2.8), (2.7), (2.17) and (2.19) can be considered as an exact non-perturbative
solution of the Yang Mills equation in the background chromomagnetic field [23, 24]. The
solution is given by the sum (2.8) A

a

i
= ≠

1
2Fijxjn

a + 1
g
Á

abc
n

b
ˆin

c, A
a

0 = 0, where n
a is defined

by the equation (2.17). The solution is parametrised by three vectors H̨, ą and b̨, and the
magnetic energy density has the general form (2.16) :

‘ = 1
4G

a

ij
G

a

ij
= (gH̨ ≠ ą ◊ b̨)2

2g2 . (5.43)

This means that the magnetic energy density 1
2H

2 of the Abelian field is lowered by the nonlinear
interaction and the zero energy density ‘ is realised when

gH̨vac = ą ◊ b̨, ‘(gH̨vac) = 0. (5.44)
10

There is no potential barrier between Abelian fields A
Õa
µ and A

ÕÕa
µ . The topological structure of the field

strength tensors and their singularities define the structure of the potential barriers. The field strength tensors

G
Õ3
12 (4.38) and G”3

12 (4.39) of the solutions A
Õ

µ and A”
µ are in the same topological class, because the gauge

transformation is trivial between them U = 1. The gauge transformation between the field strength tensors

(2.20) and (4.38), (4.39) is topologically nontrivial and singular (4.37). As a consequence, the corresponding

configurations are separated by potential barrier (4.41).
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Properties of General solution nonzero H   

and will define our ansatz for the unit colour vector in the following form:

n
a(x̨) =

3
sin(a · x) cos

3 (b · x)
sin(a · x)

4
, sin(a · x) sin

3 (b · x)
sin(a · x)

4
, cos(a · x)

4
, (3.31)

where aµ and b‹ are constant vectors and (a · x) = aµxµ, (b · x) = bµxµ. The components of
the colour field Cµ defined in (2.26) are

Cµ = aµ(b · x) cot2(a · x) ≠ bµ cot(a · x) (3.32)

and are singular on the planes aµxµ = ±fin, n = 0, 1, 2, ..... The corresponding field strength
is a constant tensor

Sµ‹ = ˆµC‹ ≠ ˆ‹Cµ = aµ · b‹ (3.33)

and is perfectly regular in the whole space. The space distance between neighbouring singu-
larities is of order 1/|̨a| and tends to zero at |̨a| æ Œ. The field strength tensor G

a
µ‹ has

contribution from two vector fields: the Abelian Bµ and colour field Cµ of the ansatz (2.18)
and has the following form:

G
a
µ‹ = (Fµ‹ + 1

g
aµ · b‹)na(x). (3.34)

The square of the field strength tensor is

1
4G

a
µ‹G

a
µ‹ = 1

4Fµ‹Fµ‹ + aµFµ‹b‹

g
+ a

2
b

2
≠ (a · b)2

2g2 . (3.35)

If the vectors aµ and b‹ are parallel, then the contribution from the space-time-dependent colour
unit vector n

a(x) will vanish, and the field strength tensor reduces to the space-independent
Abelian field Fµ‹ . The magnetic energy density can be represented in the following form:

‘ = H̨
2

2 ≠
1
g

H̨ · (̨a ◊ b̨) + 1
2g2 (̨a ◊ b̨)2

. (3.36)

The solution has a larger degeneracy because one can obtain di�erent field configurations that
have the same energy density (3.36). The minimum of ‘ is realised when the term H̨ · (̨a ◊ b̨)
gets its maximum positive value. This takes place when all three vectors (H̨, ą, b̨) are forming
the right parallelepiped, so that

‘min = H
2

2 ≠
1
g

Hab + 1
2g2 a

2
b

2
.

Let us consider the field configuration H̨ = (0, 0, H), ą = (a cos —, a sin —, 0), b̨ = (0, b sin “, b cos “)
parametrised by two angles — and “, so that the magnetic energy landscape ‘(—, “) as a function
of two angles has a series of minimums separated by potential barriers (see Fig.1):

‘(—, “) = H
2

2 ≠
1
g

Hab sin “ cos — + a
2
b

2

2g2 (cos “
2 + sin “

2 cos —
2). (3.37)
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and has the following form:
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µ‹G

a
µ‹ = 1

4Fµ‹Fµ‹ + aµFµ‹b‹

g
+ a

2
b

2
≠ (a · b)2

2g2 . (3.35)

If the vectors aµ and b‹ are parallel, then the contribution from the space-time-dependent colour
unit vector n

a(x) will vanish, and the field strength tensor reduces to the space-independent
Abelian field Fµ‹ . The magnetic energy density can be represented in the following form:

‘ = H̨
2

2 ≠
1
g

H̨ · (̨a ◊ b̨) + 1
2g2 (̨a ◊ b̨)2

.

The solution has a larger degeneracy because one can obtain di�erent field configurations that
have the same energy density (3.36). The minimum of ‘ is realised when the term H̨ · (̨a ◊ b̨)
gets its maximum positive value. This takes place when all three vectors (H̨, ą, b̨) are forming
the right parallelepiped, so that

‘min = H
2

2 ≠
1
g

Hab + 1
2g2 a

2
b

2
.

Let us consider the field configuration H̨ = (0, 0, H), ą = (a cos —, a sin —, 0), b̨ = (0, b sin “, b cos “)
parametrised by two angles — and “, so that the magnetic energy landscape ‘(—, “) as a function
of two angles has a series of minimums separated by potential barriers (see Fig.1):

‘(—, “) = H
2

2 ≠
1
g

Hab sin “ cos — + a
2
b

2

2g2 (cos “
2 + sin “

2 cos —
2). (3.36)

6

force lines are winding around each other and therefore the Hopf invariant is nonzero6 . Thus
our solution has a non-vanishing Hopf invariant density distributed over the whole space.

The conclusion is that the solution has a zero monopole charge density. It represents a
condensate of non-perturbative chromomagnetic flux tubes (vortices), which are in the form of
superposition of oppositely oriented vortices. These vortices are similar to the Nielsen-Olesen
magnetic vortices. We don’t know if solutions with nonzero magnetic monopole density exist
within the covariantly constant gauge fields. Non-vanishing of the Hopf density means that the
solution cannot be continuously deformed to a constant chromomagnetic field (2.17) and we
have a degeneracy of the classical vacuum. This degeneracy is in addition to the degeneracy
due to the nontrivial flat connections Ai = S

≠1
ˆiS, where S is the unitary matrix of a gauge

transformation that cannot be joined to the identity through the continuous transformations
[74, 75]. In the next section we will present additional solutions of the covariantly constant
field equation.

5 Chromomagnetic Flux Sheets

We found a ”chromomagnetic flux sheet” solution of the Yang-Mills equation when the unit
vector field has the following form:

n
a(x) =

3Ò
1 ≠ (a · x)2 sin(b · x),

Ò
1 ≠ (a · x)2 cos(b · x), (a · x)

4
, (5.48)

where aµ and b‹ are arbitrary constant Lorentz vectors and (a · x) = aµxµ. We can calculate
the colour field Cµ and the corresponding field strength tensor Sµ‹ defined in (2.23) and (2.26):

Cµ = bµ(a · x), Sµ‹ = aµb‹ ≠ a‹bµ © aµ · b‹ , (5.49)

so that the full field strength tensor is equal to the following expression:

G
a
µ‹ = (Fµ‹ + 1

g
aµ · b‹)na(x), (5.50)

where the tensor Fµ‹ is a constant tensor. The square of the field strength tensor is identical
to the expression (3.35) and the magnetic energy density is identical to the expression (3.36).
One can verify explicitly that the gauge field (2.18), (3.30) and (5.48) is a solution of the
Yang-Mills equation and is defined on a sheet:

(a · x)2
Æ 1. (5.51)

6
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density has the following form [7, 8]:

‘ = H̨
2

2 ≠
1
g

H̨ · (̨a ◊ b̨) + 1
2g2 (̨a ◊ b̨)2 = 1

2g2 (gH̨ ≠ ą ◊ b̨)2
. (3.48)

The minimum of ‘ is realised when

gH̨vac = ą ◊ b̨, ‘(gH̨vac) = 0 (3.49)

the term H̨ · (̨a ◊ b̨) gets its maximum positive value. This takes place when three vectors
(H̨, ą, b̨) are forming the orthogonal right oriented frame, so that

‘min = H
2

2 ≠
1
g

Hab + 1
2g2 a

2
b

2 = 1
2g2 (gH ≠ ab)2

. (3.50)

This means that the energy 1
2H

2 of the imposed magnetic field is lowered by the vacuum
”response” and the minimum of the magnetic energy is at nonzero value of the gauge field

gHvac = ab. (3.51)

At the same time if three vectors (H̨, ą, b̨) are forming the orthogonal left oriented frame the
energy density increases

‘max = H
2

2 + 1
g

Hab + 1
2g2 a

2
b

2 = 1
2(H + ab

g
)2

. (3.52)

The chromomagnetic flux tubes form a periodic lattice structure in 3D-space with fluxes ori-
ented in the opposite directions. The structure of the lattice landscape is defined by the ◊(X)
function (2.17). The classical energy landscape of general field configuration it is shown in
Fig.5.

The phenomenon of high vacuum degeneracy is not new in the Yang Mills theory [9, 10].
The Yang Mills theory in the classical approximation has an infinite degeneracy of the vacuum
state, which is labelled by the topological winding number, the Pontryagin index, which defines
several topologically inequivalent sectors separated by potential barriers [9, 10]. Here as well

the covariantly constant vacuum field configurations cannot be transformed into each other

by nonsingular continuous gauge transformations and are separated by potential barriers. It
is a challenging problem to investigate the tunneling transitions between these states and to
calculate the e�ective Lagrangian. We conjectured that the e�ective Lagrangian will be identical
to (2.44).

Turning to the statistical spin systems, one can observe that the classical 3D Ising spin
system has a double degeneracy of the vacuum state | «Í, | »Í and allows to construct a
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Properties of General solution nonzero H  

Figure 4: The l.h.s. graph shows the shape of the barrier ‘(x, –) (2.40) when – parameter
changes in the interval [≠1

2 , 0]. At – = ≠
1
2 the energy density (2.25) is equal to ‘ = 1/2

(a = b = g = 1). As – increases, the hight of the barrier increases and reaches its maximum
at – = 0, then it symmetrically decreases until – = 1

2 , where it again is equal to ‘ = 1/2. The
r.h.s graph shows the shape of the potential barrier (2.43) between the Chern-Pontryagin vacua
(2.42).

(2.23) and the flat configuration (2.36) depend on the behaviour of cos f(ax) and 1
sin2 f(ax) . It

follows that ‘ = a
2
b

2

2g2 at – = ±1/2 in accordance with the energy density (2.25), (2.37) for
both vacuum field configurations. The trigonometric expressions are the function of the moduli
parameter f(ax) of the superfluson solution (2.23), and we have a potential barrier between
superfluson configuration (2.23) and a flat chromomagnetic configuration (2.37). If w(–) is a
linear functional of its argument w = 1

2 ≠ –, then we will get6

‘(x, –) = a
2
b

2

32g2

3
13≠8–+8–

2+36–
3+16–

4+(18≠80–
2+32–

4) cos f(ax)+ (1 ≠ 4–
2)2

sin2
f(ax)

4
. (2.40)

When the Abelian part Bµn
a of the gauge potential is also present then the potential barrier

will take the following form

‘(H, x, y, –) = a
2
b

2

32g2

3
(12 ≠ 8– + 16–

2 + 32–
3

≠ 8(1 + 4–
2)gH

ab
)(1 ≠

gH

ab
) +

+2(1 ≠ 4–
2)((2gH

ab
≠ 3)2

≠ 4–
2) cos f(ax) + (1 ≠ 4–

2)2

sin2
f(ax) + (1 ≠ 4–

2)2
g

2
H

2
y

2

f
Õ
x
(ax)2

4
.

At H = 0 it reduces to the previous expression ‘(H = 0, x, –) = ‘(H, x) (2.40). For a particular
solution the potential barrier is shown in Fig.4. In order to compare the above consideration
with a topological e�ect that appeared due to the presence of gauge field configurations that
have non-vanishing Chern-Pontryagin index one can consider the flat connections defined in
[9, 10]:

Ąn(x̨) = i

g
U

≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
≠ 2i⁄‡̨x̨

x̨2 + ⁄2 , Un = U
n

1 . (2.41)

The values of the gauge field (2.42), although gauge equivalent to Ą(x) = 0, are not removed
from the integration over the field configurations by gauge fixing procedure because they belong

6There is no potential barrier between A
Õa
µ and A

ÕÕa
µ fields, and therefore they should not be considered as

physically di�erent fields.
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At H = 0 it reduces to the previous expression ‘(H = 0, x, y, –) = ‘(x, –) (2.40) and
At – = ±1/2 we have

‘(H, x, y, ±1/2) = 1
2g2 (gH ≠ ab)2

. (2.42)

For a particular solution the potential barrier is shown in Fig.4. In order to compare the above
consideration with a topological e�ect that appeared due to the presence of gauge field config-
urations that have non-vanishing Chern-Pontryagin index one can consider the flat connections
defined in [9, 10]:
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At H = 0 it reduces to the previous expression ‘(H = 0, x, y, –) = ‘(x, –) (2.40). At – = ±1/2
we have

‘(H, x, y, ±1/2) = 1
2g2 (gH ≠ ab)2

.

At the minimum gHmin = ab the initial and final configurations – = ±1/2 have magnetic
energy density equal to zero

‘(Hmin, x, y, ±1/2) = 0.

For a particular solution the potential barrier is shown in Fig.4. In order to compare the above
consideration with a topological e�ect that appeared due to the presence of gauge field config-
urations that have non-vanishing Chern-Pontryagin index one can consider the flat connections
defined in [9, 10]:

Ąn(x̨) = i
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≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
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The values of the gauge field (2.44), although gauge equivalent to Ą(x) = 0, are not removed
from the integration over the field configurations by gauge fixing procedure because they belong
to di�erent topological classes and are separated by potential barriers [9, 10, 12]. The appear-
ance of potential barriers between these zero energy troughs can be observed by calculating
the magnetic energy of the field configuration Ą

Õ
1 (x̨) = (1

2 ≠ –)Ą1(x̨) when – is continuously
6There is no potential barrier between A

Õa
µ and A

ÕÕa
µ fields, and therefore they should not be considered as

physically di�erent fields.

11



Potential barriers between vacuum solutions  

Figure 4: The l.h.s. graph shows the shape of the barrier ‘(x, –) (4.42) when – parameter
changes in the interval [≠1

2 , 0]. At – = ≠
1
2 the energy density (2.21) is equal to ‘ = 1/2

(a = b = g = 1). As – increases, the hight of the barrier increases and reaches its maximum
at – = 0, then it symmetrically decreases until – = 1

2 , where it again is equal to ‘ = 1/2. The
r.h.s graph shows the shape of the potential barrier (5.51) between the Chern-Pontryagin vacua
(5.50).

It follows that ‘(x, ±1/2) = a
2
b

2

2g2 in accordance with the energy densities (2.21)) at H = 0 and
(4.38). If w(–) is a linear functional of its argument w(–) = –, then we will get10
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For a particular solution f(ax) the potential barrier is shown in Fig.4.

5 Potential barriers between vacuum solutions
New phenomena appear in the case of non-vanishing Abelian field Bi = ≠

1
2Fijxj in (2.8), (2.10).

The solutions (2.8), (2.7), (2.17) and (2.19) can be considered as an exact non-perturbative
solution of the Yang Mills equation in the background chromomagnetic field [23, 24]. The
solution is given by the sum (2.8) A

a

i
= ≠

1
2Fijxjn

a + 1
g
Á

abc
n

b
ˆin

c, A
a

0 = 0, where n
a is defined

by the equation (2.17). The solution is parametrised by three vectors H̨, ą and b̨, and the
magnetic energy density has the general form (2.16) :

‘ = 1
4G

a

ij
G

a

ij
= (gH̨ ≠ ą ◊ b̨)2

2g2 . (5.43)

This means that the magnetic energy density 1
2H

2 of the Abelian field is lowered by the nonlinear
interaction and the zero energy density ‘ is realised when

gH̨vac = ą ◊ b̨, ‘(gH̨vac) = 0. (5.44)
10

There is no potential barrier between Abelian fields A
Õa
µ and A

ÕÕa
µ . The topological structure of the field

strength tensors and their singularities define the structure of the potential barriers. The field strength tensors

G
Õ3
12 (4.38) and G”3

12 (4.39) of the solutions A
Õ

µ and A”
µ are in the same topological class, because the gauge

transformation is trivial between them U = 1. The gauge transformation between the field strength tensors

(2.20) and (4.38), (4.39) is topologically nontrivial and singular (4.37). As a consequence, the corresponding

configurations are separated by potential barrier (4.41).
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configurations are separated by potential barrier (4.41).
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This takes place when three vectors (H̨, ą, b̨) are forming an orthogonal right-oriented frame.
At the minimum (5.44) the field strength tensor vanishes, Gij = 0, and the general solution
(2.8), (2.7), (2.17), (2.19) reduces to a flat vacuum connection of the following form:

A
a

i
= 1

g

Y
________]

________[

3
aby csc f cos

1
by csc f

f Õ

2
≠ af

Õ sin
1

by csc f

f Õ

2
+ abyf

ÕÕ

f Õ2 cos f cos
1

by csc f

f Õ

2
,

aby csc f sin
1

by csc f

f Õ

2
+ af

Õ cos
1

by csc f

f Õ

2
+ abyf

ÕÕ

f Õ2 cos f sin
1

by csc f

f Õ

2
, ≠aby

f
ÕÕ sin f

f Õ2

4

1
f Õ

3
≠ b cos f cos

1
by csc f

f Õ

2
, ≠b cos f sin

1
by csc f

f Õ

2
, b sin f

4

(0, 0, 0)

,(5.45)

where a and b are the scale parameters of the moduli space and are similar to the moduli
parameters of the instanton solution. The flat connection (5.45) can be represented in the
standard form

Ą
gH̨=ą◊b̨

= ≠
i

g
U

≠
Ǫ̀U (5.46)

and is characterised by the vector gH̨vac = ą ◊ b̨ in the 3d-space. Away from the vacuum
flat connection (5.45 ) the energy density increases quadratically (5.43). Here as well one can
investigate the details of the potential barriers between these vacuum solutions. When the
Abelian part B1 = Hy of the gauge potential (2.8) is present, then the potential barrier will
take the following form:

‘(gH, x, y, –) = a
2
b

2

32g2

3
(12 ≠ 8– + 16–

2 + 32–
3

≠ 8(1 + 4–
2)gH

ab
)(1 ≠

gH

ab
) + (5.47)

+ 2(1 ≠ 4–
2)((2gH

ab
≠ 3)2

≠ 4–
2) cos f(ax) + (1 ≠ 4–

2)2

sin2
f(ax) + (1 ≠ 4–

2)2
g

2
H

2
y

2

a2f Õ
x
(ax)2

4
.

At H = 0 it reduces to the previous expression (4.42) ‘(0, x, y, –) = ‘(x, –) and at – = ±1/2
we have

‘(gH, x, y, ±1/2) = (gH ≠ ab)2

2g2 . (5.48)

At gH = ab the initial and final configurations (5.45) and (4.38) are vacuum flat connections
because for them ‘ = 0 and the energy barrier between these vacuum configurations is

‘(gH = ab, x, y, –) = (1 ≠ 4–
2)2 a

2
b

2

32g2

3
2 cos f(ax) + 1

sin2
f(ax) + b

2
y

2

f
Õ
x
(ax)2

4
. (5.49)

One can conjecture that due to the tunnelling transitions between degenerate vacua (5.45),
which have di�erent orientations of the vector gH̨ = ą◊ b̨, a new quantum state will be induced
Â(Ą) =

s
G{„,◊,‰} Â(A

gH̨=ą◊b̨
) dµ(„, ◊, ‰), where G{„,◊,‰} is the space rotations operator. It is a

quantum-mechanical superposition of the states Â(A
gH̨=ą◊b̨

) with di�erent orientations of the
vector gH̨ = ą ◊ b̨. The Lorentz invariance of the vacuum state would be restored at the
quantum-mechanical level.
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One can conjecture that due to the tunnelling transitions between degenerate vacua (5.45),
which have di�erent orientations of the vector gH̨ = ą◊ b̨, a new quantum state will be induced
Â(Ą) =
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G{„,◊,‰} Â(A

gH̨=ą◊b̨
) dµ(„, ◊, ‰), where G{„,◊,‰} is the space rotations operator. It is a

quantum-mechanical superposition of the states Â(A
gH̨=ą◊b̨

) with di�erent orientations of the
vector gH̨ = ą ◊ b̨. The Lorentz invariance of the vacuum state would be restored at the
quantum-mechanical level.
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The CP violating topological e�ect appeared due to the presence of vacuum gauge field
configurations that have non-vanishing Chern-Pontryagin index [65, 62, 63, 64]:

Ąn(x̨) = ≠
i

g
U

≠

n
(x̨)ÒUn(x̨), U1(x̨) = x̨

2
≠ ⁄

2
≠ 2i⁄‡̨x̨

x̨2 + ⁄2 , Un = U
n

1 . (5.50)

The values of the gauge field (5.50), although gauge equivalent to Ą(x) = 0, are not removed
from the integration over the field configurations by gauge fixing procedure because they belong
to di�erent topological classes and are separated by potential barriers [65, 62, 63, 64]. The
potential barriers can be calculated between these field configurations considering Ą

Õ
1 (x̨) =

(1
2 ≠ –)Ą1(x̨) when – is continuously varying from ≠

1
2 to 1

2 . The potential barrier has the
following shape

‘(r, –) = 1
4G

a

ij
G

a

ij
= 6⁄

4(1 ≠ 4–
2)

g2(r2 + ⁄2)4 (5.51)

shown in Fig.4. In the quantum theory tunnelling will occur across this barrier and the
quantum-mechanical superposition �◊(Ą) = q

n e
in◊

Ân(Ą) represents the Yang Mills ◊ vac-
uum state [62, 63]. The induced Chern-Pontryagin ◊-angle term is Lorentz invariant, but
breaks the CP invariants, so that the distinct ◊ vacuum states correspond to distinct theories
[65, 62, 63, 64].

We do not know yet whether there exist the instanton-like transitions that would induce
a tunnelling between vacuum configurations with nonzero Pontryagin index (5.50) and the
”superfluxon” vacuum configurations (5.45), (5.46). A possible tunnelling transition between
superfluxon flat configurations and the flat configurations with non-vanishing Chern-Pontryagin
index (5.50 ) will wash out the CP violating ◊ angle to zero, dynamically restoring CP symmetry.

6 Vacuum polarisation
The existence of an even larger class of covariantly constant gauge field configurations pointed
out to the fact that the Yang-Mills vacuum has even larger degeneracy of vacuum field config-
urations11. It is a challenging problem to investigate the vacuum polarisation induced by the
new class of covariantly constant gauge fields. The early investigation revealed that the e�ec-
tive Lagrangian of the SU(N) Yang-Mills theory has the following gauge and Lorentz invariant
form:

L = ≠F ≠
11N

96fi2 g
2
F

3
ln 2g

2
F

µ4 ≠ 1
4

, (6.52)

11
The Ising spin system that has an exponential degeneracy of its vacuum configurations was discovered in

[66]. Here the parallel planes of di�erently oriented spin configurations represent the degenerate vacuum spin

configurations which are separated by potential barriers [67]. The total number of such vacuum configurations

is 3 ◊ 2
N

or 2
3N

if k = 0 [67, 68, 69, 70, 71, 72]. In recent publications this symmetry was referred to as the

subsystem symmetry, and it has exotic fracton excitations [73, 74, 75].
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Figure 4: The l.h.s. graph shows the shape of the barrier ‘(x, –) (4.42) when – parameter
changes in the interval [≠1

2 , 0]. At – = ≠
1
2 the energy density (2.21) is equal to ‘ = 1/2

(a = b = g = 1). As – increases, the hight of the barrier increases and reaches its maximum
at – = 0, then it symmetrically decreases until – = 1

2 , where it again is equal to ‘ = 1/2. The
r.h.s graph shows the shape of the potential barrier (5.51) between the Chern-Pontryagin vacua
(5.50).

It follows that ‘(x, ±1/2) = a
2
b

2

2g2 in accordance with the energy densities (2.21)) at H = 0 and
(4.38). If w(–) is a linear functional of its argument w(–) = –, then we will get10

‘(x, –) = a
2
b

2

32g2

3
12 ≠ 8– + 16–

2 + 36–
3 + (18 ≠ 80–

2 + 32–
4) cos f(ax) + (1 ≠ 4–

2)2

sin2
f(ax)

4
. (4.42)

For a particular solution f(ax) the potential barrier is shown in Fig.4.

5 Potential barriers between vacuum solutions
New phenomena appear in the case of non-vanishing Abelian field Bi = ≠

1
2Fijxj in (2.8), (2.10).

The solutions (2.8), (2.7), (2.17) and (2.19) can be considered as an exact non-perturbative
solution of the Yang Mills equation in the background chromomagnetic field [23, 24]. The
solution is given by the sum (2.8) A

a

i
= ≠

1
2Fijxjn

a + 1
g
Á

abc
n

b
ˆin

c, A
a

0 = 0, where n
a is defined

by the equation (2.17). The solution is parametrised by three vectors H̨, ą and b̨, and the
magnetic energy density has the general form (2.16) :

‘ = 1
4G

a

ij
G

a

ij
= (gH̨ ≠ ą ◊ b̨)2

2g2 . (5.43)

This means that the magnetic energy density 1
2H

2 of the Abelian field is lowered by the nonlinear
interaction and the zero energy density ‘ is realised when

gH̨vac = ą ◊ b̨, ‘(gH̨vac) = 0. (5.44)
10

There is no potential barrier between Abelian fields A
Õa
µ and A

ÕÕa
µ . The topological structure of the field

strength tensors and their singularities define the structure of the potential barriers. The field strength tensors

G
Õ3
12 (4.38) and G”3

12 (4.39) of the solutions A
Õ

µ and A”
µ are in the same topological class, because the gauge

transformation is trivial between them U = 1. The gauge transformation between the field strength tensors

(2.20) and (4.38), (4.39) is topologically nontrivial and singular (4.37). As a consequence, the corresponding

configurations are separated by potential barrier (4.41).

12



Landscape of Yang Mills theory vacuum   

energy density through the potential barrier of the shape

‘(r, –) = 1
4G

a

ij
G

a

ij
= 6⁄

4(1 ≠ 4–
2)

g2(r2 + ⁄2)4 (2.42)

shown in Fig.4. In the quantum theory tunneling will occur across this barrier. The physical
implication of the instanton induced tunnelling transition is that the quantal description of the
vacuum state cannot be limited to fluctuations around any definite classical configuration of
zero energy (2.41) and the quantum-mechanical superposition �◊(Ą) = q

n e
in◊

Ân(Ą) represents
the Yang Mills ◊ vacuum state [9, 10].

The existence of an even larger class of covariantly constant gauge fields described above
pointed out to the fact that the Yang-Mills vacuum has even higher degeneracy of vacuum field
configutations. Each covariantly constant gauge field configuration on its own contains a rich
diversity of emergent nonperturbative structures, and it is a challenging problem to investi-
gate possible tunneling transitions between these highly degenerate states and to calculate the
vacuum polarisation induced by the new class of covariantly constant gauge fields.

The early investigation of the Yang-Mills vacuum polarisation induced by covariantly con-
stant gauge field [1, 2, 3] revealed that the e�ective Lagrangian of the SU(N) Yang-Mills theory
has the following gauge and Lorentz invariant form:

L = ≠F ≠
11N

96fi2 g
2
F

3
ln 2g

2
F

µ4 ≠ 1
4

, (2.43)

where F = 1
4G

a

µ‹
G

a

µ‹
= H̨

2
a≠Ę

2
a

2 Ø 0 and G = 1
4G

a

µ‹
G̃

a

µ‹
= H̨aĘa = 0, and that the vacuum energy

density has its new minimum at a nonzero value of the field strength [2]:

È2g
2
FÍvac = µ

4 exp (≠ 96fi
2

11Ng2(µ)) = �4
S
, ‘vac = ≠

11N

192fi2 �4
S
. (2.44)

We conjecture that the e�ective Lagrangian for the general covariantly constant gauge fields has
a universal form (2.43) and that the tunneling process between degenerate vacuum field config-
urations (2.45) restores the Lorentz invariance of the vacuum state. A quasiclassical description
of the tunneling transitions can be understood in terms of averaging over the superfluson field
orientations. The general solution (2.17) includes two moduli vectors ą and b̨ which are defining
the orientation of the field configuration in 3d-space. This orientation is defined by the two
angles (—, “)

◊(X) = ◊(̨a · x̨) = ◊(|̨a||x̨| cos —), „(Y ) = „(̨b · x̨) = „(|̨b||x̨| cos “). (2.45)

and the path integral over the vacuum gauge fields configurations should include the integration
over these angles providing the Lorentz invariant description of the vacuum state.
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RIEMANNIAN GEOMETRY & TENSOR CALCULUS
Tensor calculations in the Riemannian Geometry and General Relativity - EDCRGTC

This package was developed by the late colleague and friend Dr. Sotirios Bonanos.
The package can be downloaded here: http://www.inp.demokritos.gr/~sbonano/

I n [ ] : = << EDCRGTCcode.m

I n [ ] : = f[a_, b_, c_] := Signature[{a, b, c}];
fabc = Table[f[a, b, c], {a, 1, 3}, {b, 1, 3}, {c, 1, 3}];

The unit colour vector n

I n [ ] : = n := Sin[f[ a1 x]] Cos
b2 y

f′[a1 x] Sin[f[ a1 x]]
,

Sin[f[ a1 x]] Sin
b2 y

f′[a1 x] Sin[f[a1 x]]
, Cos[f[a1 x]] ;

[ ]
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A0 =
1

g
FullSimplify[

Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], n0], {2, 3}]] ;

A1 =
1

g
FullSimplify[

Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], n1], {2, 3}]] ;

A2 =
1

g
FullSimplify[

Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], n2], {2, 3}]];

A3 =
1

g
FullSimplify[

Contract[Outer[Times, Contract[Outer[Times, fabc, n], {2, 4}], n3], {2, 3}]] ;

F12 = FullSimplify[D[A2, x] - D[A1, y] -

g Contract[Outer[Times, Contract[Outer[Times, fabc, A1], {2, 4}], A2], {2, 3}]]
F13 = FullSimplify[D[A3, x] - D[A1, z] -

g Contract[Outer[Times, Contract[Outer[Times, fabc, A1], {2, 4}], A3], {2, 3}]]
F23 = FullSimplify[D[A3, y] - D[A2, z] -

g Contract[Outer[Times, Contract[Outer[Times, fabc, A2], {2, 4}], A3], {2, 3}]]
F01 = D[A1, t] - D[A0, x];
F02 = D[A2, t] - D[A0, y];
F03 = D[A3, t] - D[A0, x];

ε =
1

4
× 2 FullSimplify[F12.F12 + F13.F13 + F23.F23]

 [ [ ]]  [ [ ]]
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YangMills equation

I n [ ] : = FullSimplify[ D[F12, x ] - g Contract[
Outer[Times, Contract[Outer[Times, fabc, A1], {2, 4}], F12], {2, 3}] ]

FullSimplify[ D[F13, x ] - g Contract[
Outer[Times, Contract[Outer[Times, fabc, A1], {2, 4}], F13], {2, 3}] ]

FullSimplify[ D[F23, x ] - g Contract[
Outer[Times, Contract[Outer[Times, fabc, A1], {2, 4}], F23], {2, 3}] ]

Out [ ] =

{0, 0, 0}

Out [ ] =

{0, 0, 0}
Out [ ] =

{0, 0, 0}

[ [ ] - [
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The potential barrier between AandA’ fields

I n [ ] : = K0 = A0 w
1

2
- α ;

K1 = A1 w
1

2
- α + w

1

2
+ α L1;

K2 = A2 w
1

2
- α + w

1

2
+ α L2 ;

K3 = A3 w
1

2
- α + w

1

2
+ α L3 ;

29

I n [ ] : = K12 = FullSimplify[D[K2, x] - D[K1, y] - g Contract[
Outer[Times, Contract[Outer[Times, fabc, K1], {2, 4}], K2], {2, 3}]] ;

K13 = FullSimplify[D[K3, x] - D[K1, z] - g Contract[
Outer[Times, Contract[Outer[Times, fabc, K1], {2, 4}], K3], {2, 3}]] ;

K23 = FullSimplify[D[K3, y] - D[K2, z] - g Contract[
Outer[Times, Contract[Outer[Times, fabc, K2], {2, 4}], K3], {2, 3}]] ;

K01 = FullSimplify[D[K1, t] - D[K0, x] - g Contract[
Outer[Times, Contract[Outer[Times, fabc, K0], {2, 4}], K1], {2, 3}]] ;

K02 = D[K2, t] - D[K0, y] -

g Contract[Outer[Times, Contract[Outer[Times, fabc, K0], {2, 4}], K2], {2, 3}] ;
K03 = D[K3, t] - D[K0, x] -

g Contract[Outer[Times, Contract[Outer[Times, fabc, K0], {2, 4}], K3], {2, 3}] ;
1

4
× 2 FullSimplify[K12.K12 + K13.K13 + K23.K23]

Out [ ] =

1

2 g2
a12 b22

-2 + w
1

2
- α

2
w

1

2
- α

2
- 2 Cos[f[a1 x]] -2 + w

1

2
- α w

1

2
- α 1 + w

1

2
- α

w
1

2
+ α + 1 + Cot[f[a1 x]]2 w

1

2
- α

2
w

1

2
+ α

2
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Happy birthday dear Brako !  


