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QUICKLY OSCILLATING PURE STATES

• Black hole information paradox – a pure state can collapse into a 
black hole and end up as a mixed state as the result of Hawking 
radiation

• This is an important issue because it implies nonunitarity of quantum 
evolution

• But there is also a thermodynamical issue – an isolated system at 
thermal equilibrium can’t increase its entropy

• If Hawking radiation is fundamentally not a mixed state, but a pure 
state which for all practical purposes behaves as a mixed state, the 
thermodynamical issue is resolved at least
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QUICKLY OSCILLATING PURE STATES

• Pure states are vastly different from mixed states. How can they be 
effectively the same?

• Due to the imperfection of quantum measurements – every time 
measuring device has a finite resolution

• The exact moment at which a measurement occurs can’t be 
precisely controlled

• Experimentally observed results correspond to averaging the 
measurement results over the time interval of the resolution of the 
time measuring device 
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QUICKLY OSCILLATING PURE STATES

• Hawking radiation is not the only process under which a pure state 
can become a mixed state – this also occurs under nonselective 
quantum measurement

• It has recently been shown that objective quantum collapse of a 
wavefunction can be obtained under nonunitary, nonlinear, stochastic 
quantum evolution

• This motivated us to consider a general mixed state under the same 
lens
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[Mertens, Wesseling, van Wezel, 2024]



QUICKLY OSCILLATING PURE STATES

• Nonunitary – a pure state can become effectively mixed

• Stochastic – quick oscillations and averaging over time can simulate 
stochastic behavior

• Nonlinear – the “same” quantum state can evolve in multiple distinct 
ways*

* In quantum mechanics we usually assume that all states differing only 
by a complex factor are identical. If evolution is not homogenous, this is 
no longer the case; different factors lead to different evolutions. 
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QUICKLY OSCILLATING PURE STATES

• Let us choose a state of the following form:

• Written in the projector form, the state is:

• When we say a state is quickly oscillating, we mean that it is of the 
former form, that all coefficients are approximately constant in the 
measurement time interval, and that all the phase differences quickly 
change in time
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QUICKLY OSCILLATING PURE STATES

• If we average the projector over the measurement time interval, we 
obtain a mixed state:

• States are (usually) not directly observed in quantum mechanics. 
Instead, we observe:

o Expectation value;

o Transition probabilities;

o Higher moments of probability distribution
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QUICKLY OSCILLATING PURE STATES

• Expectation value for a quickly oscillating state is:

• After averaging it over the time resolution interval, the result is the 
same as for the corresponding mixed state

• The transition probability from state Π෡ந into some state Π෡௔ is the 

expectation value of the projector Π෡௔ in the state Π෡ந, and as such
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QUICKLY OSCILLATING PURE STATES

• One can also consider time correlations:

• The moments in time at which the observables are taken cannot be 
chosen exactly due to the finite resolution of the time measurement 
device. As such, we average over both 𝑡 and 𝜏௜

• Since the operator product does not depend on time t, and due to 
the linearity of the trace, one obtains:
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QUICKLY OSCILLATING PURE STATES

• One can also evaluate the product of means at different moments of time:

• We need to average over both 𝑡 and 𝜏௜ as before. Each mean depends only on a single 
time 𝜏௜, and when averaging over it, time 𝑡 is treated as a constant phase. As such:

• This analysis also applies for the special case where all parameters 𝜏௜ are equal to zero, 
which corresponds to the higher moments of probability distribution

• Due to the finite resolution of the time measuring device, one cannot be certain that they 
are correlating simultaneous experimental results, and not results in slightly different 
moments of time
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QUICKLY OSCILLATING PURE STATES

• One can substitute all projectors onto states of quickly oscillating 
phases with corresponding mixed states and omit averaging over 
time. No realistic measurement result will be modified in this way

• The quickly oscillating state and the mixed state are fully equivalent 
for observable quantities

• The question whether the state is fundamentally pure and quickly 
oscillating, or mixed without rapid time dependence, appears to be 
metaphysical for all practical purposes

• We will show that this is not the case if one considers weak 
measurements on postselected systems

12



WEAK MEASUREMENTS

• In addition to absolute probabilities, there are also conditional probabilities

• Conditional probabilities in quantum mechanics correspond to postselected
systems

• At some initial time, a selective measurement is performed, and only the 
elements of the ensemble that satisfy the preselection condition contribute 
to the measurement result

• After the measurement, another selective measurement is performed, and 
the measurement results corresponding to the elements of the ensemble 
which do not satisfy the postselection condition are discarded
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[Aharonov, Bergmann, Lebowitz, 1964]



WEAK MEASUREMENTS

• When one wants to determine what is the expectation value of a given observable, one 
usually strongly couples it with the quantum system and performs a strong measurement

• The entire probability distribution for all eigenvalues of the observable is obtained, and the 
quantum state collapses in the act of measurement

• There is a way to measure expectation values directly without collapsing the state: weakly 
couple the observable to the quantum system

• The measurement device is not capable of determining what are individual measurement 
results of the given observable for each member of the ensemble, however the mean value 
can be observed

• This type of measurement can be called weak non-postselected measurement 14

[Aharonov, Vaidman, 1990]



WEAK MEASUREMENTS
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[Aharonov, Vaidman, 1990]



WEAK MEASUREMENTS

• When the experimental setup used to obtain weak non-postselected
measurements is used under a postselection condition, one obtains so-called 
weak values of (postselected) weak measurements

• Usually, using the term “weak measurement” implies that postselection has been 
performed

• Experimentally, weak measurements have been applied in many different practical 
problems: to amplify the measurement signal, to directly measure the 
wavefunction, to measure “trajectories” in the double-slit experiment and many 
more

• As will be shown, weak measurements can be used to distinguish quickly 
oscillating pure states from mixed states as well 16

[Jordan, Martínez-Rincón, Howell, 2014]
[Lundeen, Sutherland, Patel, Stewart, Bamber, 2011]

[Kocsis, Braverman, Ravets, Stevens, Mirin, Shalm, Steinberg, 2011]



WEAK MEASUREMENTS

• Unlike in non-postselected case, weak measurements in postselected
systems do not simply give an expectation value.

• Weak values are complex numbers. The real part of a weak value is directly 
observable as the position of the pointer of the measurement device, and 
the imaginary part corresponds to the momentum of the pointer.

• Since the pointer can be a macroscopic object, the uncertainty principle 
can be ignored
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WEAK MEASUREMENTS

• The weak value of an observable 𝑂෠ in a quantum system described by the 
preselected and postselected states |ψଵ⟩ and |ψଶ⟩ respectively, is given by:

• We can rewrite the expression using the statistical operators:

• The proof is simple:
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[Aharonov, Vaidman, 1990]



WEAK MEASUREMENTS

• If the postselected state is chosen to be identical to the preselected state, 
postselection has no effect and the weak value reduces to the expectation 
value:

• If the weak value is weighted by the probability of the postselection
condition being satisfied, and summed over all possible results of the 
postselection measurement, it once again becomes the expectation value:
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WEAK MEASUREMENTS

• If the phase of the first state quickly oscillates in time, the observable weak 
value needs to be time-averaged. As such, the measurement result directly 
corresponds to:

• If the preselected and postselected states are mixed, they can be written as:

• Preselecting into the mixed state 𝜌ଵ can be done by utilizing different 
preselection criteria for different members of the ensemble: 𝑝௜ is the ratio of 
the members of the ensemble that are preselected in the pure state Π௜ . 
Similar interpretation applies for postselection. 
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WEAK MEASUREMENTS

• Thus, a weak measurement with mixed states can be considered as a combination 
of weak measurements with pure states

• The probability of a random member of the ensemble corresponding to the pure 
states Π௜ and Π௜ is 𝑝௜𝑞௝

• Not all members of the ensemble satisfy the postselection criterion

• The former probability needs to be multiplied by the probability that the 
postselection is satisfied, which is the transition probability from the initial pure state 
to the final pure state, and normalized by the total probability of postselection
occurring:

21



WEAK MEASUREMENTS

• It is interesting to observe the case where the preselected state is either mixed or 
quickly oscillating, while the postselected state is pure

• If the preselected state is quickly oscillating, the observed weak value is:

• If it is mixed though, the weak value is:

• Here we make an important observation: if the state is fundamentally quickly 
oscillating and pure, the value of the weak measurement will differ from the case 
when the state is fundamentally mixed. The question regarding the nature of the 
state is no longer metaphysical, it becomes experimentally testable.
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DETECTING QUICK OSCILLATIONS

• Let us start with two-state vector systems:

• The coefficients A and B are taken to be strictly positive. The negative 
signs can be absorbed into the phases. The coefficients 𝑁௜ are 
normalization factors

• The weak value becomes:
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DETECTING QUICK OSCILLATIONS

• With a proper choice of the measured observable, the expression can 
simplify significantly. For example, let us pick the polarization observable:

• Its weak value is given by the expression:

• The real part of this weak value is:
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DETECTING QUICK OSCILLATIONS

• To explicitly evaluate the time average, we will assume that the phase difference depends 
linearly on time, with a very high frequency:

• Since the weak value is a periodic function, the average over a time interval much larger 
than the period of oscillations is equal to the average over a single period:

• Using the following known integral we can evaluate the average:
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DETECTING QUICK OSCILLATIONS

• The imaginary part of the weak value is given by the expression:

• The time averaged imaginary part of the weak value becomes zero, since 
we are averaging an odd function over its period

• It is important to note that these results do not depend on the frequency of 
oscillations, as long as the oscillation period is much shorter that the 
duration of the measurement

• In principle, this includes even the frequencies at Planck scale
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DETECTING QUICK OSCILLATIONS

• Now we will consider the weak value of the same observable when the quickly 
oscillating pure state is substituted by the corresponding mixed state:

• The weak value is now:

• This weak value can take on any value in the range [-1,1], depending on the choice of 
A and B, and is not limited to +1, -1 and 0 like in the quickly oscillating pure state case

• Weak measurements can be used to distinguish whether states are quickly oscillating 
and pure, or mixed 27



DETECTING QUICK OSCILLATIONS

• The previous analysis can easily be repeated in the case of countably many 
dimensions. Now, the quickly oscillating pure state is:

• The corresponding mixed state is:

• We choose two basis vectors |𝑎⟩ and |𝑏⟩, and measure the observable:
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DETECTING QUICK OSCILLATIONS

• We can rewrite the states as:

• For the postselected state we choose:

• It is easy to see that the results from the two-dimensional case are obtained 
once more
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DETECTING QUICK OSCILLATIONS

• In the case of a continuous basis, the analysis requires more finesse

• A quickly oscillating state is taken to be of the following form:

• We will assume that 𝐴(𝑥) and 𝜑(𝑥, 𝑡) are smooth

• As before, we will absorb the negative sign into the phase, making the 
phase a piecewise continuous function
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DETECTING QUICK OSCILLATIONS

• If we take x and y to be arbitrarily close, the oscillations will stop being fast 
at some point

• Time averaging of this quickly oscillating state will never give the exact 
mixed state

• Just like for time, there is a finite resolution of realistic measurement

• There exists a ∆𝑥 such that for all practical purposes, 𝑥 and 𝑥 + ∆𝑥 are 
experimentally indistinguishable
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DETECTING QUICK OSCILLATIONS

• The projector averages out over time into a matrix experimentally 
indistinguishable from the mixed state:

• For simplicity, we can assume:

• For the averaging to hold, the following relationship must be true for all x:

• ∆𝑡 and ∆𝑥 are the cutting-edge experimental resolutions of time and the 
observable with a continuous spectrum chosen as the basis, respectively
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DETECTING QUICK OSCILLATIONS

• Due to the finite resolution of the observable X, the effective 
mixed state might occur even at a fixed moment of time, due to 
averaging over x

• This will happen if 𝜑(𝑥) is a quickly oscillating function in x

• Otherwise, we will assume that 𝜑(𝑥) is slowly changing with x

• As before, we proceed with choosing the appropriate 
observable and the postselected state
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DETECTING QUICK OSCILLATIONS

• For the observable, we will pick:

• For the postselected state we will take:

• For the weak value we obtain:
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DETECTING QUICK OSCILLATIONS

• In what follows we will assume that the quickly changing phase is:

• The amplitude of the quickly oscillating state 𝐴(𝑥) cannot be controlled

• It can be measured without postselection since 𝐴ଶ(𝑥) is the probability 
of finding the effectively mixed state in state |𝑥⟩. It’s a known parameter

• For the postselected state, we will choose:
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DETECTING QUICK OSCILLATIONS

• The parameters Cଵ and Cଶ are positive constants

• Now we can evaluate the weak value:

• It’s simple to show this is equivalent to:

• This has the same form as the weak value in the two-state case and as 
such, the time average is the same:
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DETECTING QUICK OSCILLATIONS

• In the case that the initial state is mixed, the weak value becomes:

• After applying the postselection condition, the expression evaluates to:

• As such, weak measurements can be used to test the nature of 
effectively mixed states even in the continuous case.
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POSSIBLE EXPERIMENTS

• We have explained how to preselect a system in a mixed quantum state: 
use different preselection criteria on different members of the ensemble

• This is not the approach we suggest in potential experiments

• We should not be preselecting the states ourselves. Instead, we 
introduce a source of states which should be mixed according to theory

• These can be experimentally feasible, like a radiating black body, a 
quantum state prepared long time ago likely to have faced 
decoherence, or electrons in some material

• We can also consider thought experiments involving Unruh radiation or 
Hawking radiation
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POSSIBLE EXPERIMENTS
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CONCLUDING REMARKS

• We do not claim that the quick oscillations exist, nor do we suggest that 
the quick oscillations occur at Planckian frequencies

• However, if mixed states are fundamentally pure states oscillating at 
Planckian frequencies, tabletop weak measurements would be able to 
observe the effect

• As such, we have shown that there exist possible Planck scale 
phenomena which are observable by weak measurements in 
postselected systems, while invisible under strong nonpostselected
measurements
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CONCLUDING REMARKS

• It has been argued that weak measurements are equivalent to a set of 
nonpostselected strong measurements

• As such, weak measurements would contain no new information relative 
to nonpostselected measurements

• There are measurements which are impossible for all practical purposes

• A feasible weak measurement might be equivalent to a set of strong 
measurements on nonpostselected systems, but such that some of those 
equivalent measurements are not possible for all practical purposes

• Thus, in practice, weak measurements may lead to new information
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CONCLUDING REMARKS

• The question if states are fundamentally mixed, or they are pure but 
with relative phases quickly oscillating is not metaphysical

• This is relevant for considerations of the black hole information paradox

• We suggest there is merit in further, more rigorous study of weak 
measurements in the framework of Quantum Field Theory, as other 
applications of weak measurements could be found

• A possible extension of presented work would be to study if weak 
measurements can be used to test different models of objective 
quantum collapse which depend on stochastic perturbations.
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