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Introduction

Special quantum fields that first appeared in the literature under
the name “massless two-dimensional fermionic fields” are known
for decades to be a useful tool of investigation of completely
integrable models in quantum and in classical cases. The
Coleman–Mandelstam fermionization technique appeared in the
context of the quantization of the famous Sine-Gordon equation
about fifty years ago. But in spite of original expectations,
correspondence of the Sine–Gordon and massive Thirring models
did not lead to essential results for either one of these models.
Nevertheless, the main observation that the most nonlinear parts
of the quantum bosonic Hamiltonians become bilinear when
bosonic field is considered as a composition of fermionic ones was
confirmed by other examples.



The decay of the degree of monomials of fermionic operators
follows from the anticommutator:

[
ψ(x), ψ(y)

]
+
= 0, so that for

any normally ordered (with respect to fermions) monomial we have

: . . . ψ(x)ψ(x) . . . : = 0.

Here ψ(x) =
√

~/(2π)

∫
dke ikx ψ̃(k), where k ∈ R, and its

conjugate, ψ∗(x), denote fermionic field, such that the only
nonzero anticommutator relation sounds as

[ψ∗(x), ψ(y)]+ = ~δ(x − y),

where annihilation operators are ψ̃(k)Ω = 0, when k < 0, and
ψ̃∗(k)Ω = 0, when k > 0, where Ω denotes the vacuum. Thus

(
Ω, ψ(x)ψ∗(y)Ω

)
=
(
Ω, ψ∗(x)ψ(y)Ω

)
=

−i~

2π(x − y − i0)
.



It was discovered by Lieb and Mattis (1962), that

[
: ψ∗ψ : (x), : ψ∗ψ : (y)

]
=

~
2

2π
δ′(x − y),

where δ′ denotes derivative of the δ-function. Thus by introducing
bosonic field

v(x) =
: ψ∗ψ : (x)√

~/(2π)
,

we get that [
v(x), v(y)

]
= ~δ′(x − y).

It is easy to show that this field admits decomposition

v(x) = v(x)+ + v−(x),

where
v(x)+ = (v−(x))∗, v−(x)Ω = 0,

and we need another version of the Wick ordering, corresponding
to bosonic field:

...v2
...(x) = (v(x)+)2 + 2v(x)+v−(x) + (v−(x))2, etc.



For any real x and y we consider function

F (x , y) =
: ψ∗(x + y)ψ(x − y) :√

~/(2π)
,

that generalizes v(x) as

F (x , 0) = v(x),

In 2001 it was proved (AP) that the above bilinear combination of
Fermi-fields equals

F (x , y) =

... exp

(
i
√

2π/~

∫ x+y

x−y

dx ′ v(x ′)

)
...− 1

2i
√

2π/~ y

in the sense of operator-valued distributions with respect to
variable x that is smooth, infinitely differentiable function of y . Let
us introduce

Fn(x) =

(√
~

2π

∂y
2i

)n

F (x , y)

∣∣∣∣∣
y=0

.



It is easy to check that

∀y :

∫
dx F (x , y)Ω = 0,

and

∀y , y ′ :
[∫

dx F (x , y),

∫
dx ′ F (x ′, y ′)

]
= 0.

Thus, introducing Hn =
∫
dxFn(x) we get for any m, n = 0, 1, . . .:

HmΩ = 0, and [Hm,Hn] = 0.

Thus we have a hierarchy of integrable evolutions

vtm(x) = i [Hm, v(x)], m = 0, 1, . . . ,

where all Hm are bilinear in terms of fermions.



While in terms of bosons:

H2 =

∫
dx

{
1

3

...v3
...(x)− ~vxx(x)

24π

}
,

H3 =

∫
dx

{
1

4

...v4
...(x)− ~

8π

...v(x)vxx(x)
...

}
,

H4 =

∫
dx

{
1

5

...v5
...(x)− ~

4π

...v2(x)vxx(x)
...

}
, etc.

Thus we generate infinite hierarchy of equations

vt2(x) = ∂x
...v2

...(x),

vt3(x) = ∂x

(
...v3

...(x)− ~

4π
vxx(x)

)
,

vt4(x) = ∂x

(
...v4

...(x)− ~

π

...vvxx
...(x)− ~

2π

...v2x
...(x)

)
, . . . .



This equations are close to the equations of the KdV hierarchy, but
some terms are missed. The only exception is given by
t3-evolution, where we have a special case of the modified KdV
equation. In the classical situation this equation sounds as

vt = v2vx + αvxxx

on the real function v(t, x). It has the Lax pair, Lt = [L,A], with
operator

L =

(
∂x − 2iz2 − iv2 2izv + vx

2izv − vx ∂x + 2iz2 + iv2

)

where z is a spectral parameter. This equation is Hamiltonian,
vt = −{H, v}, with respect to the Poisson bracket

{v(x), v(y)} = δ′(x − y),

where Hamiltonian H equals

H =

∫
dx

{
1

4
v4(x) + αv2x (x)

}
,



In the quantum case we had above:

vt(x) = i [H, v(x)],

H =

∫
dx

{
1

4

...v4
...(x)− ~

8π

...v(x)vxx(x)
...

}
,

vt(x) = ∂x

(
...v3

...(x) − ~

4π
vxx(x)

)
,

so that we have a special version of the mKdV equation with

α = − ~

4π
.

It is unclear if this equation must be considered as the
dispersionless one, or not. But in the contrast to the classical
dispersionless case it has global solution.



Indeed, taking into account that Hamiltonian H is a bilinear
function of ψ we get the time dependence of ψ(x) as ψt = i [H, ψ],
we get

ψt(t, x) = − ~

2π
∂3xψ(t, x),

so that under time evolution

ψ(x) =
√

~/(2π)

∫
dk exp{ikx}ψ̃(k) ⇒

ψ(t, x) =
√

~/(2π)

∫
dk exp

{
ikx +

i~k3t

2π

}
ψ̃(k)

Now operator F (t, x , y) equals to

F (t, x , y) =

√
2π

~
: ψ∗(t, x + y)ψ(t, x − y) : .

and taking v(t, x) = F (t, x , 0) into account



we derive global solution

v(t, x) =

√
~

2π

∫∫
dkdp e i(k+p)x+i~(k3+p3)t/(2π) : ψ̃∗(−k)ψ̃(p) : ,

where due to the above

: ψ̃∗(−k)ψ̃(p) : =
1

2iπ~

∫∫
dxdy e−ikx−ipy×

×

... exp

{
i
√
2π~

∫ x

y

dξv(ξ)

}
...− 1

x − y
,

that is independent of t. Inserting this equality in the previous one
we derive the global solution of the quantum version of the mKdV
equation:



v(t, x) =
−i√
(2π)2~

∫∫∫∫
dkdpdx ′dy ′e ik(x−x ′)+ip(x−y ′)+i~(k3+p3)t/(2π)×

×

... exp

{
i
√
2π~

∫ x ′

y ′

dξv(ξ)

}
...− 1

x ′ − y ′
,

Solution of the initial problem for the (dispersionless!) mKdV
equation can be written in the parametric form as

x = s − 3tv2(s), v(t, x) = v(s),

where v(x) is initial data and s is defined by the first equality.
This solution is known to describe overturn of the front, so the
initial problem has no global solution. It is easy to see that in the
quantum case the global solution in the limit ~ → 0 takes the limit

v(t, x) =

∫
dp
[
θ
(
v(x + 3tp2)− p

)
− θ(−p)

]
,

that coincides with the above before the overturn of the front.



Expectation values.
Massless fermions have following (nonzero) expectation values:

(
Ω, ψ̃(p)ψ̃∗(−k)Ω

)
= θ(k)δ(k + p),

(
Ω, ψ̃∗(−k)ψ̃(p)Ω

)
= θ(p)δ(k + p),

so that for t-dpendence we have

(
Ω, ψ∗(t1, x1)ψ(t2, x2)

)
=
(
Ω, ψ(t1, x1)ψ

∗(t2, x2)
)
= D(t1−t2, x1−x2),

where

D(t, x) =
~

2π

∫
∞

0
dke−ikx−i~k3t/(2π).

Now relation

v(t, x) =

√
2π

~
: ψ∗(t, x)ψ(t, x) : .

provides calculation of expectation values:
(
Ω, v(t1, x1) · · · v(tn, xn)Ω

)
. (1)



In particular, (
Ω, v(t1, x1)v(t2, x2)Ω

)
= D2

12.

where we denoted D(ti − tj , xi − xj) = Dij . Here we have a kind
of the standard coupling, but calculation for the higher powers is
more involved. Say,

(
Ω,v(t1, x1)v(t2, x2)v(t3, x3)Ω

)
= 2D12D13D23,(

Ω,v(t1, x1)v(t2, x2)v(t3, x3)v(t4, x4)Ω
)
=

= D2
12D

2
34 + D2

13D
2
24 + D2

14D
2
24

+ 2D12D13D24D34 + 2D13D14D23D24.

These vacuum expectation values demonstrate composite
character of the field v . Field obeys nonlinear evolution equation,
but in terms of fermions it is linearised. Nevertheless, fermions
never appear in interaction. Their existence is manifested only in
the loop structure of the expectation values above. Thus we have
here model of confinement of the fermions.



Best wishes to

Branko Dragovich!!!


