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Why p-adic Numbers?

In Euclidean and Riemannian geometry the so-called Archimedean axiom is valid

@ Any segment of length / can be approximated by —A |
successively adding segments of arbitrary small
lengths.

€ Quantum gravity predicts the existence of the

so-called Planck length /p | |
[hG
Ax > lp = — ~ 10735 m.
c

@ At small scale spacetime shows a — @ A natural description is by means of
non-Archimedean structure. the field of p-adic numbers.
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p-adic quantum mechanics

A p-adic quantum system is described by a triple:?

(L*(Qp, C), W(2), U(1)).

¢ 12(Qp,C) is the space of p-adic wave functions: One can follow two possible approaches:
P: Qp 2 x> P(x) € C. 4 Construct a qubit as a two-dimensional
state vector in an abstract p-adic Hilbert
€ W/(z) is a unitary rep. of the Heisenberg-Weyl Space.
group on L?(Q,, C).

4 Describe a p-adic qubit as a suitable

@ U(t) is the unitary evolution operator induced by a complex representation of SO(3, Q).
p-adic Hamiltonian.

1V.S. Vladimirov, I.V. Volovich and E.l. Zelenov, p-adic Analysis and Mathematical Physics, World Scientific,
1994
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Quadratic extensions of Q,

Let 1 € Qp be a non-quadratic element in Q, (1 ¢ (Q3)?). The quadratic extension Qp, ,, of
Qp, induced by p, is the field

Qp,u = {X+ \/ﬁy | X,y € Qp}

4 The conjugation on Q,, , is defined as usual: z = x + \/uy — Z = x — \/iy.

4 We can extend the p-adic absolute value on Q, , by putting |z| := \/|zZ|,. In particular,
Qp, . is an ultrametric field.

4 Qp, is locally compact, separable, and spherically complete. It is not algebraically closed.

The quadratic extensions of QQ, are classified as follows:
(1) If p # 2, the non-isomorphic quadratic extensions are given by Q, ,, with 1 € {n, p,np},
where 7 € Q,, is a non-quadratic unit (1 ¢ (Q3)?, and |n|, = 1);

(2) if p=2, the non-isomorphic quadratic extensions are given by Q, ,, with
we {2,3,5,6,7,10,14}.
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a p-adic norm:

() Ixll =0 <= x=0;

(ii) flax|[ = lal [Ix]|;

(iii) |Ix + y|l < max{[|x]|,||y|l} (strong triangle inequality),

and X is complete w.r.t. the ultrametric induced by ||-|.

Example:

Consider the space of zero-convergent sequences in Q, ,
(N, Qp,u) = {x = {xi}tien | xi € Qp,u, “,m |xi| = 0}.
This is a p-adic Banach space once endowed with the sup-norm

loo : c0(N Qo) 5 x = fix[l oo := sup ||
ic
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4 A finite set of vectors {xi, ..., X,} is norm-orthogonal if

|37 aixi|| = maxicica lIxill - {ea,- - @0} C Qp.

A subset B C X is norm-orthogonal if every finite subset is so, and it is normal if,
additionally, || x|| = 1, for every x € X.

4 A normal basis in X is a subset B = {b;}ic; C X \ {0} that is normal and such that, for
any x € X,

x =3 i) Aibiy  {Aitier € Qp s limi|Ai[ =0, |[Ix]| = supje; [xil-

4 A p-adic Banach space (X, ||-||) admits a normal basis B = {b;};c iff it is separable, and
| X]| = |Qp,.|- Moreover, the map

a(l, Qp,p) 2 {Xiticr = D iy xibi € X,

defines a surjective isometry of cp(/,Qp,,,) into X.
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p-adic Hilbert spaces

A p-adic Hilbert space is defined as a quadruple (H, |||, (-,-),® = {¢}ic/) where
4 (H.||]]) is a p-adic Banach space;
4 (-,-) is a p-adic inner product;
4+ & = {¢;};c; is an orthonormal basis, i.e.:

lgill =1, (ingp) =05 Vijel, —x=Y (¢i,x)¢i, Yx€H.

iel

We have two distinct notions of orthogonality: The norm-orthogonality, and the inner-product
orthogonality
x,yeX xly <= (x,y)=0

An orthonormal basis ® = {¢;};c; is a normal basis of (mutually) inner-product orthogonal

vectors
<¢f;¢j>:07 Vl7./€I



Example:
Consider (co(/,Qp, ). | - [[0) and take {e;}ic/
e1 =(1,0,0,...), & =(0,1,0,...), ...

Define the (canonical) inner product (-, ),

CO(Ian,u) X CO(I’QP7[L) = (Xa}/) = <X7Y>c = ZYIW S Qp,;u

+ H(/) = (co(/, Qp,p)s || - locs (-5 )e» {€i}ier) is a p-adic Hilbert space, i.e., the coordinate
p-adic Hilbert space

4 The map
Wo:H 3 x=> (¢;i,x)¢;i — %= {(¢;,x)}ier € H(/)
iel

is a surjective isometry, i.e., an isomorphism of p-adic Hilbert spaces.
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Some important differences with the complex Hilbert spaces

4+ |[x|| # /(x,x). There exist isotropic vectors x € H, i.e., x € H, x # 0 such that

|Ix]| # 0 and (x, x) = 0.

4 M is not self-dual, i.e., H # H’'. The dual H' can be identified with £>°(/,Q, )

2°(1,Qp,) = {&={&}icr | & € Qp,p, & bounded sequence in Qp ).

4 There is no surjective isometry between 7 and H”, i.e., H is not reflexive. Instead, H is
pseudoreflexive, i.e., the map

T H3y o (W29 o ¢(8) €Qpy) €M

is an isometry (not surjective) of # into its bidual H"
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Bounded and adjointable operators

Let (Amn) € Moo (Qp,.). Using the isomorphism We: H — H(N), define a matrix operator
dom (0pe(Amn)) = {¥ = 3 (¢n ¥)n | Xy (X, Amn{n,¥0)) 6m converges},

and

Opcb(Amn)w = Zm (Zn Amn<§bn 7w>)¢m

4 For every orthonormal basis ® = {¢m }men in H,
B(H) = {opq,(Am,,) | limm Amp = 0, ¥n, and sup, , [Ama| < oo}7

and
[ All = sup . [Amn| = sup, [|Adnl|-

4+ If A: H — H is bounded, then A = op({(Pm,Adn)) = 0pe(Amn),
A= Em Zn Amn<¢n 5 '>¢ma

where (((;5,, , ->¢m)w = (¢n, 1 )Pm, with the series converging w.r.t. the strong operator
topology.
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Since H 2 H’, not all bounded operators admits a Hilbert space adjoint. A is adjointable —
i.e., A€ Bua(H)— iff

SUPm.n [Amn| < 00, limy Apy =0, Vn €N, lim, Ay, =0, Vm € N.
), i.e.,
ZZA ¢m d)m - ZZ ¢naA¢n d)na >¢)m

In this case, A* = opg(AZL,) = ope(Anm

4 B.a(H) is a p-adic Banach space and a unital Banach subalgebra of B(#). In particular,
(Baa(H), *) is a p-adic Banach x-algebra.

4 A linear operator is selfadjoint iff A= A*. In this case, A = opg(Amn) = 0Pe(Anm)-
4+ If A€ B(H,K), for any pair of o.n.b. ® = {¢py}tmen in H and ¥V = {t),}pen in K,

A—Opcb\ll ZZAmn ¢na'wm—zz wmaA¢n ¢na'>¢m-
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The Trace class of a p-adic Hilbert space

The set of trace class operators is defined, for (Tmn) € Moo (Qp,.), as
T(H)d) = {T - Opd)(Tmn) | ’!':Tn U = r!ann <¢m7 T¢n> - 0}

* If T € T(H)o, then T € Baa(H) and T* € T(H)o:

4 The definition of the trace class of H does not depend on the o.n.b. chosen in H, i.e.,
T(H)o =T(H)w = T(H);

4 The trace tro(T) = _;(¢i, Toi) is always finite, and tre(T) = try(T);

4 The linear subspace 7 (H) of Baa(H) C B(H) is a left ideal in B(H);

4+ T(H) is a two-sided *-ideal in Bag(H);

4+ T(H) =C(H)aa = C(H) N Baa(H) is a norm-closed subset of C(H); any trace class
operator T can be expressed as

ZJEJ < ) >e17

with the series converging w.r.t. the norm-topology. This gives the singular-value
decomposition of T € T(H).
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On T (H) we can define the Hermitian sesquilinear form
TH)XTH)S(S, T) = (S, T)rpy =tr(S*T) € Qp
(-, )@ is non-degenerate i.e., it is the p-adic Hilbert-Schmidt inner product on T (#).

4 For any given orthonormal basis ® = {¢,} men in H, we can construct the family of
matrix operators {*E®}; ey as

*p® = ope*E2 ) = (6}, - )bk, where *ED = §;6n.
In particular, we have: (¥E® T) ., = Ty, and *E®}; ken is an o.n.b. in T(H).
4+ (T(H), (-, )7@m0) is an inner product p-adic Banach space. For every o.n.b. ® = {¢}men
in H, (T(H), || I (- Ym0, XE®Y ken) is the p-adic Hilbert-Schmidt space.

4 A trace class operator T: H — K is defined in the same way

T(H,K) ::{Op¢,w(Tmn) = Zm Z,,(wm, Ton)(Ym, )0n |
Ton = (Um, Ton) € Moo(Qp, ) st [iMppn T = 0}.
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n
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is a norm on H&K.
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product on H ®, K.
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4 Define the projective norm over HRK

n
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is a norm on H&K.
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ano.n.b. in H ®, K. Thus, (H @~ K, ||-||,., (-, ), M) is a p-adic Hilbert space.



Tensor product of p-adic Hilbert spaces

4 Define the projective norm over HRK

n

HOK 3 > [lull, = inf {_max [[xill lyille | u = X7y xiyi}.

+ 1f {x;}); is a finite n.os. in H, then ||37_; xi®y;|| = maxi<i<a lIxill,, llyillc: hence, |||,
is a norm on H&K.

4 The metric completion of (K&K, ||-||,.) is a p-adic Banach space (H @~ K, |-]..).

+ The map (x1®y1, 8y2) = (x1,%2), (V1,Y2), X1,% € H, y1,y2 € K, is a p-adic inner
product on H ®, K.

4+ Ifo= {¢i}iEN and ¥V = {wj}jEN are two o.n.b. in H and C, then 1 = {¢i®7/}j}i,jeN><N is
ano.n.b. in H ®, K. Thus, (H @~ K, ||-||,., (-, ), M) is a p-adic Hilbert space.
4 The map J: T(H,K) = H @, K defined as
T(H,’C) 5T~ j(T) = Zi,jEN <1/)J7 T¢I> ¢I®wjv j(<¢la >wj) - (J¢¢I>®wj7

is an isomorphism of the p-adic Hilbert space H ®, K into T(H, K).
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Algebraic formulation




Algebraic formulation of quantum mechanics

4 The (bounded) observables of the system form the self-adjoint part s, of an abstract
non-commutative unital C*-algebra 2.

4 The set of states, G(2A), is a convex subset of the (complex) Banach space of bounded
functionals on 2(. A state w of 2 satisfies

w(A*A) >0, VAe, w(d)=1.

4 The pairing between sates and observables is provided by the evaluation map:
Wga X S(A) 3 (A,w) — w(A) € R;
w(A) gives the expectation value of the observable A in the state w

4 The GNS construction allows us to recover the usual description of quantum mechanics in

terms of density operators.



An algebraic state for a p-adic system is a functional wp: Baq(#H) — Qp,, such that:

() llwpll = Supjaj=1 |ewp(A)] < o0
(il) wp(Id) =1;
(iii) wp(A*) = wp(A), VA€ Baa(H).

We denote the set of p-adic algebraic states by S(Baq(H)).



An algebraic state for a p-adic system is a functional wp: Baq(#H) — Qp,, such that:

() llwpll = Supja|=1 |ewp(A)] < o0
(il) wp(Id) =1;
(iii) wp(A*) = wp(A), VA€ Baa(H).

We denote the set of p-adic algebraic states by S(Baq(H)).

Conditions (i)—(iii) are related to the following observations:

4 The set of possible experimental outcomes is bounded.

4 Since the possible experimental outcomes are p-adic numbers, we must use a p-adic model
of probability: (ii) and (iii) assure that we can always construct a p-adic probability
distribution.

4 The field Qp,,, is not ordered. Hence, the positivity condition for states need not be
required.



p-Adic trace induced states

Consider the linear functional wy, on Baq(#), defined, for p € T(H), as
wp = tr((-)p): Baa(H) 3 B = wp(B) = tr(Bp) € Qpp-



p-Adic trace induced states

Consider the linear functional w, on B.a(H), defined, for p € T(H), as
wp = t1((-)): Baa(H) 3 B > wp(B) = tx(Bp) € Q.
4 For w, to be an algebraic state of B,q(#) it must be true that
wp(l) =1 = trp)=1, wp(B)=p(B) « p=p"
4 We define the set of statistical operators
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for every S € Too(H), tr((-)S): Baa(H) — Qp,u is a state for H.
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wp = t1(()9): Baa(H) 3 B 1 wp(B) = tx(Bp) € Q.
4 For w, to be an algebraic state of B,q(#) it must be true that
o) =1 > () =1, wp(B)=wp(B) > p=p".
4 We define the set of statistical operators
Ta(H) ={S€T(H)|S=5" tx(5) =1},
for every S € Too(H), tr((-)S): Baa(H) — Qp,u is a state for H.
4+ T (H) is a closed Qp-affine subset of T(H); for every T € Tg(H)
Ta(H) = T + T(H)o,
where T(H)o ={S e T(H)|S=5" tr(S) =0}



p-Adic trace induced states

Consider the linear functional w, on B.a(H), defined, for p € T(H), as
wp = t1(()9): Baa(H) 3 B 1 wp(B) = tx(Bp) € Qpp.
4 For w, to be an algebraic state of B,q(#) it must be true that
) =1 > t(p) =1, wp(B)=wp(B) — p=p"
4 We define the set of statistical operators
Tse(H) ={Se€T(H)|S=S5" tr(S) =1},
for every S € Too(H), tr((-)S): Baa(H) — Qp,u is a state for H.
4+ T (H) is a closed Qp-affine subset of T(H); for every T € Tg(H)
Tse(H) = T + T(H)o,
where T(H)o ={S e T(H)|S=5" tr(S) =0}
4 The map defined as
T Tee(H) 2 S = (t2((+)S): Baa(H) = Qpu) € S(Baa(H))
is a continuous Qp-affine injection of Tt (H) into S(Baa(H)).
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p-Adic density operators

Define the set
D(H) ={S € T(H) | |IS|| = 1}.

4 The set D(H) is a Qp-convex closed subset of 7(#). We can call the elements of this set
density operators.

4+ A statistical operator S € T (#) is in D(H) iff
S=2_N(f e, maxInI=1, 3o N(f.e) =1,

JjeJ Jjed

where {ej}jc; — or {fj}jc; — is a normalized norm-orthogonal system in #.



p-Adic density operators

Define the set
D(H) ={S € T(H) | |IS|| = 1}.

4 The set D(H) is a Qp-convex closed subset of 7(#). We can call the elements of this set
density operators.
4+ A statistical operator S € T (#) is in D(H) iff
S=2_N(f e, maxInI=1, 3o N(f.e) =1,

jed jed
where {ej}jc; — or {fj}jc; — is a normalized norm-orthogonal system in #.

4 For a two-dimensional Hilbert space, dim(?) = 2, we can define p-adic qubits

1
D(H) = {p € M2(Qp ) | p= = (Id2 + x101 + X202 + x303 ), ()i € @}, [loll =17,
2

_ (1 0 _ (0 1 o 0 VI
g1 .— 0 -1 s 02 .= 10 5 o3 .= —\/ﬁ 0 .



Statistical interpretation of the
theory




p-Adic probability theory

A (discrete) p-adic probability distribution is a countable set {m;}ic; C @, such that
Ziel m =12,

2A.Y. Khrennikov, “p-adic probability theory and its applications. The principle of statistical stabilization of
frequencies”, Theor. Math. Phys. 97, pp. 1340-1348 (1993).
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A (discrete) p-adic probability distribution is a countable set {m;}ic; C @, such that
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4 The collection of all probability distributions indexed by / can be identified with a
Qp-affine subset of co(/,Qp,.):
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A (discrete) p-adic probability distribution is a countable set {m;}ic; C @, such that
Ziel m =12,

4 The collection of all probability distributions indexed by / can be identified with a
Qp-affine subset of co(/,Qp,.):

w(l,Qp) = {{ﬂ'i}iel € (), Qo) | mi € Qp, Vi€ !, Yy mi = 1}.

4 In the set w(/,Qp ) it is possible to single out a Qp,-convex subset vo(/, Qp,,.)

vo(l,Qpp) = {{w;};e/ € o, Qpp) | i € Zp, Vi€ ], Yy mi = 1}.

2A.Y. Khrennikov, “p-adic probability theory and its applications. The principle of statistical stabilization of
frequencies”, Theor. Math. Phys. 97, pp. 1340-1348 (1993).



p-Adic probability theory

A (discrete) p-adic probability distribution is a countable set {m;}ic; C @, such that
Ziel m =12,

4 The collection of all probability distributions indexed by / can be identified with a
Qp-affine subset of co(/,Qp,.):

o(1,Qp,) = {{w,-},-e, € (), Qo) | mi € Qp, Vi€ !, Yy mi = 1}.
4 In the set w(/,Qp ) it is possible to single out a Qp,-convex subset vo(/, Qp,,.)
vo(l,Qpp) = {{w;};e/ € o, Qpp) | i € Zp, Vi€ ], Yy mi = 1}.

4 The set vg(/,Qp,,.) is the probability simplex of co(/,Qp ).

2A.Y. Khrennikov, “p-adic probability theory and its applications. The principle of statistical stabilization of
frequencies”, Theor. Math. Phys. 97, pp. 1340-1348 (1993).



p-Adic observables

Definition

A (discrete) selfadjoint-operator-valued measure (SOVM) is a norm-bounded countable family
{Ai}icr C Bsa(H) such that ), A; = Id (with the series converging in the weak operator
topology). A SOVM is said to be contractive if ||A;]| <1 forall i € /.
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4+ If Q € S(Baa(H)) is a trace induced state, i.e., Q = 7 (p), for some p € To(H), the
sequence {Q(A;)}ics defines a p-adic probability distribution in @w(/,Qp, ;).
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p-Adic observables

A (discrete) selfadjoint-operator-valued measure (SOVM) is a norm-bounded countable family

{Ai}icr C Bsa(H) such that ), A; = Id (with the series converging in the weak operator
topology). A SOVM is said to be contractive if ||A;]| <1 forall i € /.

A SOVM always induces a p-adic probability distribution. Let {A;};c; C Bsa(H) be a SOVM.
Then

4+ If Q € S(Baa(H)) is a trace induced state, i.e., Q = 7 (p), for some p € To(H), the
sequence {Q(A;)}ics defines a p-adic probability distribution in @w(/,Qp, ;).

4+ If Q is a density state, i.e., Q = 73(p) for some p € D(H), and if {A;}ic; is contractive,
the sequence {Q(A;)}ies is contained in the probability simplex vg(/, Qp,,.).

4 Consider the family of Hermitian operators M = {M;}>_;,

1 1
My =1dz, Mo = —01, Mz=—03, My=—03, Ms= +VE :
1- i -1

Then, Z?:l M; = 1dy, {tr(pM:)}3_; = {1, —x1, —x2, X3, X1 + X2 — px3} is a p-adic
probability distribution.



Conclusions




Main results and outlook

Main results Outlook

% p-adic Hilbert space H over Q, ,;

o,
0,
0‘0

Symmetry transformations:

> Clharmeerierien @ o Maps which preserve the affine

o Bounded operators B(H).
o Adjointable operators B,q(#).

o Trace class operators T (H). o Logic structure of a p-adic quantum
system.

00

structure of the state space.

R
0‘0

Orthogonal projections:

> Characterization of p-adic states: < Tensor product of p-adic Hilbert spaces:

<

o p-adic algebraic states. o Characterization of separable and

o p-adic statistical and density entangled states

operators. 5 ) _
+ Dynamical maps and dynamical
< Definition of SOVMs as a suitable semigroups:
description of p-adic observables. o p-adic quantum channels and

instruments.
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