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Introduction



Why p-adic Numbers?

In Euclidean and Riemannian geometry the so-called Archimedean axiom is valid

◆ Any segment of length l can be approximated by

successively adding segments of arbitrary small

lengths.

◆ Quantum gravity predicts the existence of the

so-called Planck length ℓP

∆x ≥ ℓP ≡
√

ℏG
c3

≈ 10−35m.

A

B

◆ At small scale spacetime shows a

non-Archimedean structure.
=⇒ ◆ A natural description is by means of

the field of p-adic numbers.
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p-adic quantum mechanics

A p-adic quantum system is described by a triple:1

(L2(Qp,C),W (z),U(t)).

◆ L2(Qp,C) is the space of p-adic wave functions:

ψ : Qp ∋ x 7→ ψ(x) ∈ C.

◆ W (z) is a unitary rep. of the Heisenberg-Weyl

group on L2(Qp,C).

◆ U(t) is the unitary evolution operator induced by a

p-adic Hamiltonian.

One can follow two possible approaches:

✦ Construct a qubit as a two-dimensional

state vector in an abstract p-adic Hilbert

space.

✦ Describe a p-adic qubit as a suitable

complex representation of SO(3,Qp).

1V.S. Vladimirov, I.V. Volovich and E.I. Zelenov, p-adic Analysis and Mathematical Physics, World Scientific,

1994
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Quadratic extensions of Qp

Let µ ∈ Qp be a non-quadratic element in Qp (µ /∈ (Q∗
p)

2). The quadratic extension Qp,µ of

Qp, induced by µ, is the field

Qp,µ := {x +
√
µy | x , y ∈ Qp}.

✦ The conjugation on Qp,µ is defined as usual: z = x +
√
µy 7→ z = x −√

µy .

✦ We can extend the p-adic absolute value on Qp,µ by putting |z | :=
√
|zz |p. In particular,

Qp,µ is an ultrametric field.

✦ Qp,µ is locally compact, separable, and spherically complete. It is not algebraically closed.

The quadratic extensions of Qp are classified as follows:

(1) If p ̸= 2, the non-isomorphic quadratic extensions are given by Qp,µ, with µ ∈ {η, p, ηp},
where η ∈ Qp is a non-quadratic unit (η /∈ (Q∗

p)
2, and |η|p = 1);

(2) if p = 2, the non-isomorphic quadratic extensions are given by Qp,µ, with

µ ∈ {2, 3, 5, 6, 7, 10, 14}.
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Basic Results



p-adic Banach spaces

A p-adic Banach space is a pair (X , ∥·∥), where X is a vector space over Qp,µ, ∥·∥ : X → R+ is

a p-adic norm:

(i) ∥x∥ = 0 ⇐⇒ x = 0;

(ii) ∥αx∥ = |α| ∥x∥;
(iii) ∥x + y∥ ≤ max{∥x∥ , ∥y∥} (strong triangle inequality),

and X is complete w.r.t. the ultrametric induced by ∥·∥.

Example:

Consider the space of zero-convergent sequences in Qp,µ

c0(N,Qp,µ) := {x = {xi}i∈N | xi ∈ Qp,µ, lim
i
|xi | = 0}.

This is a p-adic Banach space once endowed with the sup-norm

∥·∥∞ : c0(N,Qp,µ) ∋ x 7→ ∥x∥∞ := sup
i∈N

|xi |
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✦ A finite set of vectors {x1, . . . , xn} is norm-orthogonal if∥∥∑n
i=1 αixi

∥∥ = max1≤i≤n ∥xi∥ , {α1, . . . , αn} ⊂ Qp,µ.

A subset B ⊂ X is norm-orthogonal if every finite subset is so, and it is normal if,

additionally, ∥x∥ = 1, for every x ∈ X .

✦ A normal basis in X is a subset B ≡ {bi}i∈I ⊂ X \ {0} that is normal and such that, for

any x ∈ X ,

x =
∑

i∈I λibi , {λi}i∈I ⊂ Qp,µ, limi |λi | = 0, ∥x∥ = supi∈I |xi |.

✦ A p-adic Banach space (X , ∥·∥) admits a normal basis B ≡ {bi}i∈I iff it is separable, and

∥X∥ = |Qp,µ|. Moreover, the map

c0(I ,Qp,µ) ∋ {xi}i∈I 7→
∑

i∈I xibi ∈ X ,

defines a surjective isometry of c0(I ,Qp,µ) into X .
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p-adic Hilbert spaces

A p-adic Hilbert space is defined as a quadruple
〈
H, ∥·∥ , ⟨· , ·⟩,Φ ≡ {ϕi}i∈I

〉
where

✦ (H, ∥·∥) is a p-adic Banach space;

✦ ⟨· , ·⟩ is a p-adic inner product;

✦ Φ ≡ {ϕi}i∈I is an orthonormal basis, i.e.:

∥ϕi∥ = 1, ⟨ϕi , ϕj⟩ = δij ∀i , j ∈ I , x =
∑
i∈I

⟨ϕi , x⟩ϕi , ∀x ∈ H.

We have two distinct notions of orthogonality: The norm-orthogonality, and the inner-product

orthogonality

x , y ∈ X x ⊥ y ⇐⇒ ⟨x , y⟩ = 0

An orthonormal basis Φ ≡ {ϕi}i∈I is a normal basis of (mutually) inner-product orthogonal

vectors

⟨ϕi , ϕj ⟩ = 0, ∀i , j ∈ I .
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Example:

Consider (c0(I ,Qp,µ), ∥ · ∥∞) and take {ei}i∈I

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . .

Define the (canonical) inner product ⟨· , ·⟩c

c0(I ,Qp,µ)× c0(I ,Qp,µ) ∋ (x , y) 7→ ⟨x , y ⟩c =
∑
i

xiyi ∈ Qp,µ,

✦ H(I ) ≡ ⟨c0(I ,Qp,µ), ∥ · ∥∞, ⟨· , ·⟩c , {ei}i∈I ⟩ is a p-adic Hilbert space, i.e., the coordinate

p-adic Hilbert space

✦ The map

WΦ : H ∋ x =
∑
i∈I

⟨ϕi , x ⟩ϕi 7→ x̆ ≡ {⟨ϕi , x ⟩}i∈I ∈ H(I )

is a surjective isometry, i.e., an isomorphism of p-adic Hilbert spaces.



Some important differences with the complex Hilbert spaces

✦ ∥x∥ ≠
√
⟨x , x ⟩. There exist isotropic vectors x ∈ H, i.e., x ∈ H, x ̸= 0 such that

∥x∥ ≠ 0 and ⟨x , x⟩ = 0.

✦ H is not self-dual, i.e., H ̸= H′. The dual H′ can be identified with ℓ∞(I ,Qp,µ)

ℓ∞(I ,Qp,µ) := {ξ = {ξi}i∈I | ξi ∈ Qp,µ, ξ bounded sequence in Qp,µ}.

✦ There is no surjective isometry between H and H′′, i.e., H is not reflexive. Instead, H is

pseudoreflexive, i.e., the map

IH : H ∋ ψ 7→
(
H′ ∋ ϕ′ 7→ ϕ′(ψ) ∈ Qp,µ

)
∈ H′′

is an isometry (not surjective) of H into its bidual H′′
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Linear operators in a p-adic
Hilbert space



Bounded and adjointable operators

Let (Amn) ∈ M∞(Qp,µ). Using the isomorphism WΦ : H → H(N), define a matrix operator

dom
(
opΦ(Amn)

)
:=
{
ψ =

∑
n⟨ϕn , ψ ⟩ϕn |

∑
m

(∑
n Amn⟨ϕn , ψ ⟩

)
ϕm converges

}
,

and

opΦ(Amn)ψ :=
∑

m

(∑
n Amn⟨ϕn , ψ ⟩

)
ϕm.

✦ For every orthonormal basis Φ ≡ {ϕm}m∈N in H,

B(H) =
{
opΦ(Amn) | limm Amn = 0, ∀n, and supm,n |Amn| <∞

}
,

and

∥A∥ = supm,n |Amn| = supn ∥Aϕn∥.

✦ If A : H → H is bounded, then A = opΦ(⟨ϕm ,Aϕn ⟩) ≡ opΦ(Amn),

A =
∑

m

∑
n Amn⟨ϕn , ·⟩ϕm,

where
(
⟨ϕn , ·⟩ϕm

)
ψ := ⟨ϕn , ψ ⟩ϕm, with the series converging w.r.t. the strong operator

topology.
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Since H ≇ H′, not all bounded operators admits a Hilbert space adjoint. A is adjointable —

i.e., A ∈ Bad(H) — iff

supm,n |Amn| <∞, limm Amn = 0, ∀n ∈ N, limn Amn = 0, ∀m ∈ N.

In this case, A∗ = opΦ(A
∗
mn) = opΦ(Anm), i.e.,

A∗ =
∑
m

∑
n

A∗
mn⟨ϕn, ·⟩ϕm =

∑
m

∑
n

⟨ϕn,Aϕn⟩⟨ϕn, ·⟩ϕm.

✦ Bad(H) is a p-adic Banach space and a unital Banach subalgebra of B(H). In particular,

(Bad(H), ∗) is a p-adic Banach ∗-algebra.

✦ A linear operator is selfadjoint iff A = A∗. In this case, A = opΦ(Amn) = opΦ(Anm).

✦ If A ∈ B(H,K), for any pair of o.n.b. Φ ≡ {ϕm}m∈N in H and Ψ ≡ {ψn}n∈N in K,

A = opΦ,Ψ(Amn) =
∑
m

∑
n

Amn⟨ϕn , ·⟩ψm =
∑
m

∑
n

⟨ψm ,Aϕn ⟩⟨ϕn , ·⟩ψm.
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The Trace class of a p-adic Hilbert space

The set of trace class operators is defined, for (Tmn) ∈ M∞(Qp,µ), as

T (H)Φ :=
{
T = opΦ(Tmn) | lim

m+n
Tmn = lim

m+n
⟨ϕm,Tϕn⟩ = 0

}
.

✦ If T ∈ T (H)Φ, then T ∈ Bad(H) and T ∗ ∈ T (H)Φ;

✦ The definition of the trace class of H does not depend on the o.n.b. chosen in H, i.e.,

T (H)Φ = T (H)Ψ ≡ T (H);

✦ The trace trΦ(T ) =
∑

i ⟨ϕi ,Tϕi ⟩ is always finite, and trΦ(T ) = trΨ(T );

✦ The linear subspace T (H) of Bad(H) ⊂ B(H) is a left ideal in B(H);

✦ T (H) is a two-sided ∗-ideal in Bad(H);

✦ T (H) = C(H)ad := C(H) ∩ Bad(H) is a norm-closed subset of C(H); any trace class

operator T can be expressed as

T =
∑

j∈J λi ⟨fj , ·⟩ej ,

with the series converging w.r.t. the norm-topology. This gives the singular-value

decomposition of T ∈ T (H).
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On T (H) we can define the Hermitian sesquilinear form

T (H)× T (H) ∋ (S ,T ) 7→ ⟨S ,T ⟩T (H) := tr(S∗T ) ∈ Qp,µ

⟨· , ·⟩T (H) is non-degenerate i.e., it is the p-adic Hilbert-Schmidt inner product on T (H).

✦ For any given orthonormal basis Φ ≡ {ϕm}m∈N in H, we can construct the family of

matrix operators {jkEΦ}j,k∈N as

jkEΦ := opΦ(
jkEΦ

mn) = ⟨ϕj , ·⟩ϕk , where jkEΦ
mn = δjmδkn.

In particular, we have: ⟨jkEΦ,T ⟩T (H) = Tjk , and {jkEΦ}j,k∈N is an o.n.b. in T (H).

✦ (T (H), ⟨· , ·⟩T (H)) is an inner product p-adic Banach space. For every o.n.b. Φ ≡ {ϕm}m∈N

in H, (T (H), ∥·∥ , ⟨· , ·⟩T (H), {jkEΦ}j,k∈N) is the p-adic Hilbert-Schmidt space.

✦ A trace class operator T : H → K is defined in the same way

T (H,K) :=
{
opΦ,Ψ(Tmn) =

∑
m

∑
n⟨ψm ,Tϕn ⟩⟨ψm , ·⟩ϕn |

Tmn ≡ ⟨ψm ,Tϕn ⟩ ∈ M∞(Qp,µ) s.t. limm+n Tmn = 0
}
.
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Tensor product of p-adic Hilbert spaces
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Part II

p-Adic Quantum Mechanics



Algebraic formulation



Algebraic formulation of quantum mechanics

✦ The (bounded) observables of the system form the self-adjoint part Asa of an abstract

non-commutative unital C∗-algebra A.

✦ The set of states, S(A), is a convex subset of the (complex) Banach space of bounded

functionals on A. A state ω of A satisfies

ω(A∗A) ≥ 0, ∀A ∈ A, ω(Id) = 1.

✦ The pairing between sates and observables is provided by the evaluation map:

Asa ×S(A) ∋ (A, ω) 7→ ω(A) ∈ R;

ω(A) gives the expectation value of the observable A in the state ω

✦ The GNS construction allows us to recover the usual description of quantum mechanics in

terms of density operators.



Definition

An algebraic state for a p-adic system is a functional ωp : Bad(H) → Qp,µ such that:

(i) ∥ωp∥ := sup∥A∥=1 |ωp(A)| <∞;

(ii) ωp(Id) = 1;

(iii) ωp(A
∗) = ωp(A), ∀A ∈ Bad(H).

We denote the set of p-adic algebraic states by S(Bad(H)).

Conditions (i)–(iii) are related to the following observations:

✦ The set of possible experimental outcomes is bounded.

✦ Since the possible experimental outcomes are p-adic numbers, we must use a p-adic model

of probability: (ii) and (iii) assure that we can always construct a p-adic probability

distribution.

✦ The field Qp,µ is not ordered. Hence, the positivity condition for states need not be

required.
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p-Adic trace induced states

Consider the linear functional ωp on Bad(H), defined, for ρ ∈ T (H), as

ωp ≡ tr(( · )ρ) : Bad(H) ∋ B 7→ ωp(B) ≡ tr(Bρ) ∈ Qp,µ.

✦ For ωp to be an algebraic state of Bad(H) it must be true that

ωp(Id) = 1 ⇐⇒ tr(ρ) = 1, ωp(B
∗) = ωp(B) ⇐⇒ ρ = ρ∗.

✦ We define the set of statistical operators

Tst(H) := {S ∈ T (H) | S = S∗, tr(S) = 1},

for every S ∈ Tst(H), tr(( · )S) : Bad(H) → Qp,µ is a state for H.

✦ Tst(H) is a closed Qp-affine subset of T (H); for every T ∈ Tst(H)

Tst(H) = T + T (H)0,

where T (H)0 := {S ∈ T (H) | S = S∗, tr(S) = 0}.

✦ The map defined as

τH : Tst(H) ∋ S 7→
(
tr(( · )S) : Bad(H) → Qp,µ

)
∈ S(Bad(H))

is a continuous Qp-affine injection of Tst(H) into S(Bad(H)).
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p-Adic density operators

Define the set

D(H) := {S ∈ Tst(H) | ∥S∥ = 1}.

✦ The set D(H) is a Qp-convex closed subset of T (H). We can call the elements of this set

density operators.

✦ A statistical operator S ∈ Tst(H) is in D(H) iff

S =
∑
j∈J

λj⟨fj , ·⟩ej , max
j∈J

|λj | = 1,
∑
j∈J

λj⟨fj , ej ⟩ = 1,

where {ej}j∈J — or {fj}j∈J — is a normalized norm-orthogonal system in H.

✦ For a two-dimensional Hilbert space, dim(H) = 2, we can define p-adic qubits

D(H) :=
{
ρ ∈ M2(Qp,µ) | ρ =

1

2

(
Id2 + x1σ1 + x2σ2 + x3σ3

)
, (xi )

3
i=1 ∈ Q3

p, ∥ρ∥ = 1
}
,

σ1 :=

(
1 0

0 −1

)
, σ2 :=

(
0 1

1 0

)
, σ3 :=

(
0

√
µ

−√
µ 0

)
.
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Statistical interpretation of the

theory



p-Adic probability theory

Definition

A (discrete) p-adic probability distribution is a countable set {πi}i∈I ⊂ Qp such that∑
i∈I πi = 12.

✦ The collection of all probability distributions indexed by I can be identified with a

Qp-affine subset of c0(I ,Qp,µ):

ϖ(I ,Qp,µ) :=
{
{πi}i∈I ∈ c0(I ,Qp,µ) | πi ∈ Qp, ∀i ∈ I ,

∑
i∈I πi = 1

}
.

✦ In the set ϖ(I ,Qp,µ) it is possible to single out a Qp-convex subset υ0(I ,Qp,µ)

υ0(I ,Qp,µ) :=
{
{πi}i∈I ∈ c0(I ,Qp,µ) | πi ∈ Zp, ∀i ∈ I ,

∑
i∈I πi = 1

}
.

✦ The set υ0(I ,Qp,µ) is the probability simplex of c0(I ,Qp,µ).

2A.Y. Khrennikov, “p-adic probability theory and its applications. The principle of statistical stabilization of

frequencies”, Theor. Math. Phys. 97, pp. 1340-1348 (1993).
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p-Adic observables

Definition

A (discrete) selfadjoint-operator-valued measure (SOVM) is a norm-bounded countable family

{Ai}i∈I ⊂ Bsa(H) such that
∑

i∈I Ai = Id (with the series converging in the weak operator

topology). A SOVM is said to be contractive if ∥Ai∥ ≤ 1 for all i ∈ I .

A SOVM always induces a p-adic probability distribution. Let {Ai}i∈I ⊂ Bsa(H) be a SOVM.

Then

✦ If Ω ∈ S(Bad(H)) is a trace induced state, i.e., Ω = τH(ρ), for some ρ ∈ Tst(H), the

sequence {Ω(Ai )}i∈I defines a p-adic probability distribution in ϖ(I ,Qp,µ).

✦ If Ω is a density state, i.e., Ω = τH(ρ) for some ρ ∈ D(H), and if {Ai}i∈I is contractive,

the sequence {Ω(Ai )}i∈I is contained in the probability simplex υ0(I ,Qp,µ).

✦ Consider the family of Hermitian operators M = {Mi}5i=1,

M1 = Id2, M2 = −σ1, M3 = −σ2, M4 = −σ3, M5 =

(
1 1 +

√
µ

1−√
µ −1

)
.

Then,
∑5

i=1 Mi = Id2, {tr(ρMi )}5i=1 = {1,−x1,−x2, µx3, x1 + x2 − µx3} is a p-adic

probability distribution.
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Main results and outlook

Main results

❖ p-adic Hilbert space H over Qp,µ;

❖ Characterization of

◦ Bounded operators B(H).

◦ Adjointable operators Bad(H).

◦ Trace class operators T (H).

❖ Characterization of p-adic states:

◦ p-adic algebraic states.

◦ p-adic statistical and density

operators.

❖ Definition of SOVMs as a suitable

description of p-adic observables.

Outlook

❖ Symmetry transformations:

◦ Maps which preserve the affine

structure of the state space.

❖ Orthogonal projections:

◦ Logic structure of a p-adic quantum

system.

❖ Tensor product of p-adic Hilbert spaces:

◦ Characterization of separable and

entangled states.

❖ Dynamical maps and dynamical

semigroups:

◦ p-adic quantum channels and

instruments.
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