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Abstract

We review the Hartle-Hawking construction for the full quantum gravity and
show how it can be realized in the PFQG theory. We then review the QFT effective
action and show how to relate it to the wavefunction of the Universe.
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1 Wavefunction of the Universe

• The WFU can be determined by the Hartle-Hawking construction, which is a path
integral for M with ∂M = Σ

Figure 1: Topology of the Hartle-Hawking manifold

• The main problem is the definition of the path integral

Ψ0(q) =
∫
DQeiS(Q)/h̄ ,

where

Q = (g, ϕ) , q = Q|Σ = (h, φ) , S(Q) = SAHC(g) + Sm(g, ϕ) ,

SAHC =
∫
M

√
g (R(g) + Λ) d4x .

• Discretization approach

M → T (M) , Q→ (L, ϕ) , S(L, ϕ) =
1

GN

SRC(L) + Sm(L, ϕ) ,

SRC(L) =
∑

∆∈T (M)

A∆(L) δ∆(L) + ΛV4(L) ,

V4(L) =
∑

σ∈T (M)

Vσ(L) ,

DQ = µ(L)
N∏
ε=1

dLε
n∏
v=1

dϕv ,

and find the limit when N →∞ and Lε → 0.
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• HH construction
µ(L) = const. , S(L, ϕ) = iSE(L, ϕ) .

• HH is problematic because e−SE(L,ϕ) is not a bounded function on the L space.

• One can avoid this problem by using the minisuperspace approximation and complex
contours, but HH does not work in full QG.

• PLQG approach: Let N and n be large and

µ(L) = e−V4(L)/L4
0

N∏
ε=1

(
1 +
|Lε|2

l20

)−p
,

where L0, l0 and p parameters.

• When S = SG, easy to show that the path integral is convergent for

p >
1

2
.

• The exponential damping factor is necessary in order to have the correct SC expan-
sion of the EA, see [1, 2].

• When S = SG + SSM , the PLQG path integral is convergent for

p > 52,5 .

See [5].

• The smooth-manifold approximation

Ψ0(q) ≈ Φ0[h(~x), φ(~x)] , ~x ∈ Σ ,

when N →∞ and lε = O(l0/N).

• Time evolution
Ψ(q, t) = ZT (M(t)) ,

where
M(t) = M0 t (Σ× [ti, t])

• The time function is determined by the triangulation T (Σ × I) such that T is a
temporal triangulation, i.e.

T (U) =
n′⋃
k=1

Tk(Σ) ∪ T (Ū) ,

where

U ≡ Σ× I , Ū = U \
n′⋃
k=1

Σk ,
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Figure 2: PFQG spacetime manifold with a time variable interval.

while all the edge lengths in Tk(Σ) are spacelike and all the edge lengths in T (Ū)
are timelike. Then

∆tk = min{Lγ =
∑
ε∈γ
|Lε| : γ ∈ T (Ū)} ,

where γ is a PL curve with an inital point in T1(Σ) and a final point in Tk(Σ).

• When n′ →∞ then ∆tk ≈ t− ti and

Ψ(q, t) ≈ Φ[h(~x), φ(~x), t] , ~x ∈ Σ .

• We can write
Ψ(q, t) = ÛT (t, ti)Ψ0(q) ,

and we expect that the evolution operator will be unitary for a hamiltonian trian-
gulation of Σ× I

T1(Σ) = T2(Σ) = · · · = Tn′(Σ) .

2 The Effective Action

• QFT EA
M = Σ× I = R3 ×R ,

the metric on M is flat and

Z[J ] =
∫
Dϕ e

i
h̄(S[ϕ]+

∫
M
J(x)ϕ(x) d4x) ,
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where S = Sm.

• Legandre transform

Γ[ϕ] = W [J ]−
∫
M
J(x)ϕ(x) d4x ,

where

W [J ] = −ih̄ logZ[J ] , ϕ(x) =
δW

δJ(x)
.

• It is easy to show that

eiΓ[ϕ]/h̄ =
∫
Dφ exp

[
i

h̄

(
S[ϕ+ φ]−

∫
M

δΓ[ϕ]

δϕ(x)
φ(x) d4x

)]
.

• The EA equation has a perturbative solution

Γ[ϕ] = S[ϕ] + h̄Γ1[ϕ] + h̄2Γ2[ϕ] + · · · ,

which is valid in the perturbative regime

|S| � h̄|Γ1| � h̄2|Γ2| � · · · .

• From the relationship

ϕ(~x, t) = 〈Ψ0|Û(t2, t) ϕ̂(~x) Û(t, t1)|Ψ0〉 =
δW

δJ(x)

∣∣∣
J=0

,

where |Ψ0〉 is the vacuum state, Û is the evolution operator and t1 → −∞, t2 → +∞,
we see that the QFT EA is defined with respect to the QFT vacuum.

• In the QG case one can define the analog of the QFT Z[J ], by using the PLQG
path integral for M = Σ × I. However, then it is not clear what is the Ψ0 state,
because the QG Hamiltonian is not bounded from bellow.

• The answer comes from the QM formulas

〈q2|Û(t2, t1)|q1〉 =
∫
Dq exp

(
i

h̄

∫ t2

t1
L(q, q̇) dt

)
,

where q(tk) = qk, k = 1, 2 and

Z1,2[J(t)] =
∫
Dq exp

(
i

h̄

∫ t2

t1
[L(q, q̇) + J(t)q(t)] dt

)
.

• Consequently

〈q̂(t)〉1,2 =
δZ1,2

δJ(t)

∣∣∣
J=0

= 〈q2|Û(t2, t) q̂ Û(t, t1)|q1〉 ,

so that the PLQG path integral on Σ × I is just the Feynman formula for the
evolution operator
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Figure 3: Topology of the QM propagator manifold.

Figure 4: Topology of the QFT effective action manifold
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• If we assume that the analog of the QFT vacuum is the HH state Ψ0(q), then we
obtain

〈q̂(t)〉Ψ0 =
∫
dnq1

∫
dnq2Ψ∗0(q2)〈q̂(t)〉1,2Ψ0(q1) ,

which will be generated by the path integral for the manifold M = M0 t U tM0

• Taking the closed manifold M0 t U t M0 is not physically justifiable, because it
means that the history of our universe will end in a big crunch. Hence we take the
open manifold M0 t U in order to construct the EA that corresponds to the WFU
Ψ(q, t).

3 EA and the manifold topology

• Let
M = M− t U , M̄ = M− t U tM+

where U ≡ Σ× [ti, tf ], while M± indicates the manifold M0 with the boundary Σ at
the time tf and at the time ti, respectively.

• We can then write

ZM̄ =
∫
dnq−

∫
dnq+ Z0(q−)ZU(q−, q+)Z∗0(q+) ,

ZM̄(J̄) =
∫
dnq−

∫
dnq+ Z0(J−, j−, q−)ZU(q−, J̃ , q+)Z∗0(q+, j+, J+) ,

where
J̄ = (J−, j−, J̃ , j+, J+) , Q = (Q−, q−, Q̃, q+, Q+) ,

Qα = (Lα,Φα) , q± = (l±, ϕ±) , n = nl + nϕ ,

where nl is the number of edges and nϕ is the number of vertices of Ti(Σ) and Tf (Σ).

• The simbol Z∗0 means that we take e−iS/h̄ instead of eiS/h̄ in the integrand, where S
is the classical action on T (M+).

• In the standard QFT we are not interested in the dynamics of Q±, so that we use

Z̃U(J̃) = ZM̄(0, 0, J̃ , 0, 0) =
∫
dnq−

∫
dnq+ Z0(q−)ZU(q−, J̃ , q+)Z∗0(q+) ,

=
∫
dnq−

∫
dnq+ Ψ0(q−)ZU(q−, J̃ , q+) Ψ∗0(q+) .

• Consequently
Γ̃U(Q̃) = W̃U(J̃)− J̃Q̃ ,

where
Q̃ = ∂W̃U/∂J̃ , W̃U = −ih̄ log Z̃U .
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• Note that one can also use

ΓU(q−, Q̃, q+) = WU(j−, J̃ , j+)− j−q− − J̃Q̃− j+q+ ,

where
WU = −ih̄ logZU , Q̃ = ∂WU/∂J̃ , q± = ∂WU/∂j± ,

J̃Q̃ = JLL+ JΦΦ , jq = jll + jϕϕ .

• When
Ψ0(q) = δ(q − q0) = δ(l − l0)δ(ϕ− ϕ0) ,

where l0 gives a flat metric on T (Σ) and ϕ0 = 0 we have

Γ̃U(L,Φ) = ΓU(q0, L,Φ, q0) .

• If NU →∞ such that Lε = O(1/NU) for all ε ∈ T (U) and for the trivial WFU then

Γ̃U(L,Φ) ≈ Γ̃U [g, ϕ] ≡ ΓU ,K [g, ϕ] ,

where ΓU ,K is the usual QFT EA for the momentum cutoff h̄K, which is proportional
to h̄/L̄U , where L̄U the average edge length in T (U).

4 The WFU correction

• When the WFU is nontrivial, instead of using the effective action Γ̃U(Q̃), it is easier
and more resonable to use the effective action for the manifold M = M0 tU , which
we denote as ΓM(Q−, q−, Q̃, q+).

• We can write

ΓM(Q−, q−, Q̃, q+) = ΓU(q−, Q̃, q+) + ∆ΓM(Q−, q−, Q̃, q+) ,

and the correction ∆ΓM can be calculated perturbatively by using the perturbative
expansions

ΓU(q−, Q̃, q+) =
∑
k≥0

h̄k ΓU ,k(q−, Q̃, q+) ,

and
ΓM(Q−, q−, Q̃, q+) =

∑
k≥0

h̄k ΓM,k(Q−, q−, Q̃, q+) ,

when |Lε| � lP and |ϕ̃v| < 1 for ε, v ∈ T (M).

• We then have

ΓM,0(QM) = S(Q−, q−) + S(q−, Q̃, q+) ≡ S0 + SU ,

ΓM,1(QM) =
i

2
Tr(log(S0 + SU)′′)− i log µ(LM) ,

ΓU ,0 = SU , ΓU ,1(QU) =
i

2
Tr(logS ′′U)− i log µ(LU) ,

where QU = (q−, Q̃, q+) and S ′′0 , S ′′U denote the corresponding Hessian matrices, see
[4].
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• The higher-order corrections Γk are functions of the higher-order derivatives of
S(L,Φ) and of the higher-order derivatives of log µ(L), and a Γk function is de-
termined by summing the evaluations of the connected 1PI graphs with k loops, see
[4].

• Consequently we can write

ΓM,k(QM) = ΓU ,k(QU) + ∆ΓM,k(QM) ,

for k = 0, 1, 2, ... .

• Given an arbitrary manifold M , then on T (M) we can rewrite the perturbative
expansion as

Γ(L,Φ)

h̄
=
SRC(L) + S̃m(L,Φ)

l2P
+ Γ1(L,Φ) + l2P

Γ2(L,Φ)

GN

+ l4P
Γ3(L,Φ)

G2
N

+ · · ·

≡ S̃(L,Φ)

l2P
+
∑
k≥1

l
2(k−1)
P Γ̃k(L,Φ) .

• One can show that for N large

S̃ = O(N(L̄)2) , Γ̃1 = O(N) , (D.4)

where N is the number of edges in T (M) and L̄ is the average edge length in T (M).

• From the expansion (D.3) and the result (D.4) we expect to have for k > 1

Γ̃k = O

(
N

(L̄)2(k−1)

)
.

• Consequently
S̃U = O(NU L̄

2
U) , S̃0 = O(N0L̄

2
0) ,

so that |SU | � |S0| for NU � N0 and L̄U ≈ L̄0.

• Similarly,

Γ̃U ,k = O

(
NU

(L̄U)2(k−1)

)
, Γ̃M,k = O

(
NU +N0

(L̄M)2(k−1)

)
,

so that for k ≥ 1 we obtain
|ΓU ,k| ≈ |ΓM,k| ,

for NU � N0 and L̄U ≈ L̄M , which is a consequence of L̄U ≈ L̄0.

• This then implies
ΓM(QM) ≈ ΓU(QU) ,

and
|ΓU(QU)| � |∆ΓM(QM)| .
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5 Conclusions

• One can construct the Hartle-Hawking state Ψ0(q) by using the PFQG path integral
for a PL manifold T (M0).

• The WFU time evolution Ψ(q, t) is determined by the PFQG path integral for the
PL manifold T (M0 t Σ× [ti, t]).

• The EA can be associated to the quantum state Ψ(q, t) by using the generating
function for the manifold T (M) = T (M0 t Σ× [ti, t]).

• The QFT effective action corresponds to the generating functional for U ≡ Σ×[ti, tf ],
where ti → −∞ and tf → +∞.

• The WFU corrections to the QFT EA can be taken into account by using a non-
trivial HH wavefunction, and instead of using the EA for T (M0 t U t M0), it is
easier to use the EA for T (M0 t U).

• Note that the QFT EA coefficients ΓM,k[g, ϕ] will not be the same as the usual per-
turbative QFT coefficients ΓK,k[g, ϕ], where h̄K is the momentum cutoff determined
by the average edge length in T (U). This is because the coefficents ΓK,k are defined
on the manifold U where the boundary metrics are flat and the boundary fields are
vanishing.

• One can write
ΓM,k[g, ϕ] = ΓK,k[g, ϕ] + ∆ΓM,k[g, ϕ] ,

and the corrections can be calculated by using the perturbative expansions of
ΓM(L,Φ) and ΓU(L,Φ).

• We expect that the corrections ∆Γk will be small compared to ΓK,k when

NU � N0 , L̄0 ≈ L̄U .
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