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A central idea in physics of complex systems is that, non-equilibrium
(relaxation) phenomena can be modeled by a CTMC where the states are
local minima of a multidimensional surface called energy landscape.

A.Moran-Ledezma Time-Varying Energy Landscapes and Tempel Belgrade, 2025 2/49



|
The Energy Landscape Approach

@ The energy landscape models all possible configurations as points on
a multidimensional surface with many local minima
(stable/metastable states) and barriers (transition states).

@ This framework naturally separates:

o Fast vibrational relaxations within basins.
o Slow transitions between basins (configurational changes).

@ It provides physical insight into how materials relax and evolve over
time.

References: Stillinger & Weber, Science, 1984; Mauro et al., J. Chem. Phys., 2012.
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|
Master Equation

The evolution of the basin occupation probabilities over time, t, is

governed by a set of coupled differential equations known as master
equations:

% ZKJ,[T(t]pj ZKIJ[T ()] pi(1)

J# J#i

Using transition state theory, each element of the transition rate matrix
can be calculated as:

Ki[T(£)] = vjjexp {Ukjr_(;)]]
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Q-Matrix Formulation

The master equation can be written in matrix form as a Q-matrix equation:

d
p(t) = QIT(O]p(1)

where p(t) is the vector of occupation probabilities and Q[T (t)] is the
transition rate matrix (Q-matrix).

The elements of the Q-matrix are given by:

[ Ki[T()] for i # J,
Qi[T(t)] = {_ Zk;ﬁi Kiy[T(t)] fori=j,

with Kji[T(t)] defined as before.
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Solution via Matrix Exponential

For constant temperature T, the formal solution to the master equation is:

p(t) = exp(=Q[T]t) p(0)

where exp(—Q[T] t) denotes the matrix exponential of —Q[T] t.
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Why Solvable Mathematical Models for Glass Relaxation

@ Glass relaxation is a key scientific and technological challenge—crucial
for predicting stability and long-term behavior of materials.

@ Direct simulations on experimental timescales are unfeasible for
complex glasses.

@ The system’s enthalpy (energy) landscape is extremely complex,
involving a huge number of possible configurations and transitions.

Reference: Mauro et al., Minimalist Model of Relaxation in Glass, J. Chem. Phys., 2012.
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|
The Case for Minimalist (Solvable) Models

@ Too many states: The number of energy minima and barriers is
astronomically large—far too big to enumerate or analyze directly.

e Simulations are limited: Molecular Dynamics (MD) can only reach
nanosecond timescales, but glass relaxation occurs over much longer
periods (seconds to years).

o Statistical models help... but: They avoid the timescale problem,
but are often very difficult to solve or generalize to real materials.

Solution:
Develop simple, analytically solvable models that:
@ Capture the essential features of glass relaxation.

@ Can be solved exactly (not only simulated).

@ Allow us to study the influence of barriers, entropy, and temperature.

Reference: Mauro et al., J. Chem. Phys., 2012.
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Minimalist landscape model of glass relaxation

John C. Mauro*, Morten M. Smedskjaer

Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA

ARTICLE INFO ABSTRACT
Arn‘c{e history: The relaxation behavior of glass is of great scientific and technological importance.
Received 23 November 2011 However, prediction of glass relaxation behavior using direct first principles techniques

Received in revised form 9 January 2012

e € is currently infeasible for realistic laboratory time scales. The enthalpy landscape approach
Available online 3 February 2012

has proven to be successful in overcoming this time scale constraint and providing insights
into the fundamental physics governing glass transition and relaxation behavior. However,
it is still too computationally intensive to calculate representative enthalpy landscapes
Enthalpy landscape . . P ; B . N
Glass relaxation for multicomponent glasses of industrial interest. It is thus interesting to consider a
Modeling simplified enthalpy landscape that captures the essential features of glass relaxation and
can be solved analytically. Here, we present the analytical solution for such a “minimalist
landscape” model that is complicated enough to capture both primary («) and secondary
(B) relaxation processes, yet simple enough to offer a closed-form solution. Using this
minimalist landscape, we perform model calculations to illustrate the relative impact of
activation barriers and entropy on glass relaxation behavior. The results of our model
show that & and f relaxation processes are largely decoupled, in agreement with recently
published experimental results.

Keywords:

© 2012 Elsevier B.V. All rights reserved.
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Fractal free energy landscapes in structural glasses

Patrick Charbonneau®23, Jorge Kurchan?, Giorgio Parisi®, Pierfrancesco Urbani’ & Francesco Zamponi3

Glasses are amorphous solids whose constituent particles are caged by their neighbours and
thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing
multiple minima (basins) separated by high barriers. Here we show, using theory and
numerical simulation, that the landscape is much rougher than is classically assumed. Deep in
the glass, it undergoes a ‘roughness transition’ to fractal basins, which brings about
isostaticity and marginal stability on approaching jamming. Critical exponents for the basin
width, the weak force distribution and the spatial spread of quasi-contacts near jamming
can be analytically determined. Their value is found to be compatible with numerical
observations. This advance incorporates the jamming transition of granular materials into the
framework of glass theory. Because temperature and pressure control what features of the
landscape are experienced, glass mechanics and transport are expected to reflect the features
of the topology we discuss here.
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Degeneracy in Native and Unfolded Basins

@ Native basin: The native state is not a single structure, but an
ensemble of rapidly interconverting, nearly isoenergetic

conformations.!

@ Unfolded basin: The unfolded state also consists of a heterogeneous
ensemble of conformations, separated by barriers of various heights,
with rapid transitions between them.?

o Modeling perspective: Both basins can be described as clusters of
(quasi-)degenerate states, justifying hierarchical models with multiple
barrier scales.’

This supports the use of models with two metabasins, each containing many
(nearly) degenerate substates separated by multi-scale energy barriers.

]'A.N. Yakubovich et al., Biochim. Biophys. Acta, 2004; see also Onuchic & Wolynes, Curr. Opin. Struct. Biol., 2004.
2L. S. Itzhaki et al., Protein Science, 2006; F. Ding et al., PNAS, 2005.
3J. E. Shea et al., Annu. Rev. Phys. Chem., 1999; F. Ding et al., PNAS, 2005.
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Why Study Time-Dependent Energy Landscapes?

o Real materials and biomolecules experience changing
environments.

@ In glasses, relaxation dynamics depend on the "temperature
path” —the history of how temperature changes with time.*
@ In proteins, both the energy landscape and transition rates can vary
over time due to:
o Artificial modulation (e.g., controlled temperature ramps)
o Intracellular interactions and physiological processes
e Environmental fluctuations
@ Time-dependent rates are key to understanding non-equilibrium
dynamics and memory effects.

4
Mauro et al., J. Chem. Phys., 2012
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The p-adic Numbers and the p-adic Norm

o Let Q be the set of rational numbers.
@ For a prime p, the p-adic norrp of x = £ # 0 is defined as

Ix|p = p~") | where 2 = p”{; for some integer v and coprime a’, b'.
@ The norm extends by setting |0[, := 0.

@ The completion of Q with respect to | - |, gives the field Q, of p-adic
numbers.
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Properties of Q,

o (Qp,|-|p) is an ultrametric space:

X+ ylp < max{|x|p, y[p}

There is a Haar measure dx on Q.

Every x € Qp can be written as a convergent Laurent series:

9]
X:Zkak7 XkG{O,...,p—l}
k=v

The unit ball is Zp := {x € Qp : |x|, < 1}.
A function w : Q, — R is called radial if w(x) = w(|x|p).
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Finite p-adic Groups and Ball Decomposition

@ The finite group G, := Z,/p"Z, consists of elements
Gnox=ay+ap+ - +a1p"t, a€{0,....p—1}

@ 7, decomposes as a disjoint union:

ZP = |_| 3+anp
aEGn
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Tree Representation of G, for p = 2

Level 0: radius 2° =1 :

Level 1: radius 271 = 1 0 1

Level 2: radius 272 = %

000/00\001 / \ / \ / \

010 | 011 101 | 110 | 111

Figure: Tree representation of Gz for p =2
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|
The p-adic Ball Operator

Let
W, f(x, £) = / w(lx — y)) [F(y. 1) — F(x, )] dy.

Zp

As n — 0o, we obtain the evolution equation:

G000 = [ WOy )l 0] o
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Finite Dimensional Approximation

o Let V,, = Spanc{pa(x) := p"l,1pnz,(x)}, where 1,4 pnz,(x) is the
indicator function of the ball a + p"Zj.

@ Then V, = CF".
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Matrix Representation

@ With respect to the basis {¢a}acc,, the matrix representation is
(¢bs Wz,02) 12(z,) = w(la — blp), fora# b,

(Pa, WZP(P3>L2(ZP) = —Ya
where v, = > pcq, bra Wlla — blp).
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Master Equation for the Finite System

The system restricted to V,, yields a master equation for a continuous time
Markov chain:

d n
() = WEo(t),

where ¢(t) € CP" and the matrix entries are

(W(n)) , = W(‘a—b’p), ifa;éb
Lp 7% —Ya, ifa=b»b
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When n increase, the number number of barriers and the depth increase.

Conformation
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Master Equation with Time-Dependent Transition Function

We propose to study the dynamics generated by a master equation of the
form:

d
Ef(xa t): [W(X7.y7 t)f(y7 t)_W(y7X7 t)f(X, t)] dya
Kn
where
Ky = |_| | +Zp.
lev

and w : Ky x Ky x (0,00) — (0, 00) is a not necessarily symmetric
function .
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W.A. Ztiiiga-Galindo

Ultrametric diffusion, rugged energy landscapes and )
transition networks™

Chesktor
pdaies

University of Texas Rio Grande Valley, School of Mathematical & Statistical Sciences, One West University
Blvd, Brownsville, TX 78520, United States

ARTICLE INFO

ABSTRACT

Article history.
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Received in revised form 7 March 2022
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Keywords:
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Protein foldin;

‘p-adic mathematical physics

Available online 14 March 2022

In this article we introduce the ultrametric networks which are p-adic continuous
analogs of the standard Markov state models constructed using master equations. A
p-adic transition network (or an ultrametric network) is a model of a complex system
consisting of a hierarchical energy landscape, a Markov process on the energy landscape,
and a master equation. The energy landscape consists of a finite number of basins.
Each basin is formed by infinitely many network configurations organized hierarchically
in an infinite regular tree. The transitions between the basins are determined by a
transition density matrix, whose entries are functions defined on the energy landscape.
The Markov process in the energy landscape encodes the temporal evolution of the
network as random transitions between configurations from the energy landscape. The
master equation describes the time evolution of the density of the configurations. We
focus on networks where the transition rates between two different basins are constant
functions, and the jumping process inside of each basin is controlled by a p-adic radial
function. We solve explicitly the Cauchy problem for the master equation attached to
this type of networks. The solution of this problem is the network response to a given
initial concentration. If the Markov process attached to the network is conservative,
the long term response of the network is controlled by a Markov chain. If the process
is not conservative the network has absorbing states. We define an absorbing time,
which depends on the initial concentration, if this time is finite the network reaches
an absorbing state in a finite time. We identify in the response of the network the
terms responsible for bringing the network to an absorbing state, we call them the fast
transition modes. The existence of the fast transition modes is a consequence of the
assumption that the energy landscape is ultrametric (hierarchical), and to the best of
our understanding this result cannot be obtained by using standard methods of Markov
state models. Nowadays, it is widely accepted that protein native states are kinetic hubs
that can be reached quickly from any other state. The existence of fast transition modes
implies that certain states on an ultrametric network work as kinetic hubs.
©2022Elsevier B.V. All rights reserved.
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In this work, W.A. Zuhiga-Galinda use two functions
w(x|y), w(y,x) € C(Ky x Ky) satisfying w(x|y) < w(y|x). Here
w(x,y) > 0 is one function not necessarily symmetric.
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Time-Dependent p-adic Transition Function

Definition
A time-dependent p-adic transition function
w : Ky x Ky x (0,00) — (0,00) is a function of the form:

wix,y, 1) = Y wi(xy, ) Q" x — 11,) Q" |y — JIp)
I1,Jev

where:
® wy (x,y,t) = w(|x — y|p, t) are bounded radial functions,

o wyy(x,y,t) =wj(t) for I # J.
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Block Structure of the Transition Rate Matrix

The transition rate matrix is given by

where each diagonal block Py (t) has the Parisi matrix form:

o~ o~

N N N N N e N

L R T N N N

e N N N N N

e R R R N N N

— N N e e N N

o~~~

N e N N e N N
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-
Off-Diagonal Blocks

The off-diagonal blocks are given by

for I # J.

[ wi(t)

W/J(t)
wiy(t)
W/_/(t)
wiy(t)
W/J(t)
wiy(t)

L wi(t)

wiy(t)
W[_](t)
wiy(t)
W[_](t)
wiy(t)
W[J(t)
wiy(t)
W[J(t)

wiy(t)
W/J(t)
wiy(t)

wiy(t)
W[J(t)
wiy(t)
W[J(t)
wiy(t)
W[J(t)
wiy(t)
W[J(t)

wiy(t)
W/_/(t)
wyy(t)
W/_/(t)
wiy(t)
W[J(t)
wiy(t)
W[J(t)

wiy(t)
W/_/(t)
wiy(t)
W/_/(t)
wiy(t)
W[J(t)
wiy(t)
W[J(t)
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Theorem

Let w(x,y, t) be a time-dependent p-adic transition function such that the
functions w(x, y, t) is uniformly continuous. Then there exists a probability
transition function P(t,x;s,-), where (t,x,s) € [0, T] x K x [0, T], and

s < t, on the Borel o-algebra of K, such that the Cauchy problem

{%‘;(x, £) = [, Wlx,y, uly, t) — wly, x, t)u(x, )] dy
u(x,s) = u(x) € C(Kn),

has a unique solution satisfying:

Blp(X) [ X~ u() o = [ pl)P(exis dy)uCe)d = [ o(ulx tidx

Ky x Ky Ky

In addition, P(t,x;s,-) is the transition function of a strong Markov
process.
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Summary of the Proof

e Fix tp > 0 and define wy(x,y) = w(x,y, to).
* — —_
@ The operator W*u(x) = fKN wo(x, y)[u(y) — u(x)]dy generates a
Feller semigroup (Hille-Yosida theorem):
o (a) The range of A\g — W* is dense in C(Ky).
o (b) Maximum principle: if f attains its maximum at xg, then
W*f(xg) < 0.

@ The time-dependent operator W*(t) generates a Feller evolution,
yielding a strong Markov process with transition probabilities
P(t,x; s, dy).

@ The evolution families of W(t) and its adjoint W*(t) are dual in
Lz(KN)Z

[ (P69 ) g (x)e = [ )Pt )g) )
Kn Kn
o Consequently, for a solution u(x, t) of the Cauchy problem,

E[p(Xe)| Xs ~ u(x)dx] = / P(x)u(x, £)dx

Kn
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Theorem

Let w(x,y,t) be a time-time dependent p-adic transition function
satisfying the hypothesis of Theorem 2. Then the solution of the Cauchy
problem (with initial condition at s) is given by

u(x, t + s)uo(x) = d(x, t +s)
Z Cnl,j(s)e_ fst'yl,r(T)dT,l]Z)J_’,’r(X),

supp(Vj,1,r)CKn

+

where t > s, and the coefficients C,  j(s) are uniquely determined by the
initial condition.

Here:

Y1,r(t) = / wir(|x|p, t)dx + p " Tw(p’, ) + > wiy(t)
Zp\p"1Zp Jev
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Frame Title

Where
a(x, t)

is the solution of the CTMC attached to the matrix w; 4(t) (the
transitions between metabasins only.
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We have the decomposition
L2(Ky) = CVT @ Lo(Kn).

For any f € L?(Ky) denote by f the projection of f in the space
CVl =~ span{laiz,}acv. Then, we have

f(x)=f+ Z Gt r Vit e

supp(V;,1,-)CKn
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In a two metabasin model: Z, and a + Z,, with initial condition
u(x) = 1,-n7,(x) the characteristic relaxation is given by

S(t) - p_r()pl(t) + p—fo Z ‘Cr,J',nlze_ fOt'Y”U(T)dT
Supp wr,j,nngU
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Relaxation

0.10

Delta (V) s

Tfinal (K) s 200.00

Barreras: 0.7,0.7 = 6,... (T=300K) Barreras: 0.7,... (300-200.0K), 6=0.100

104 Niveles ro Niveles ro
— =2 — n=2
— n=3 — n=3
— n=4 —
08 — n=5 1 — =5
06 !
04
: \\
0.0
10¢ 106 107 10 10° 102 104 106 107 105 102 10t 10¢ 107 1010
Time (s) Time (s)
o 5 = E DAy

Ledezma




Relaxation
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Relaxation
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o0 Folding and Unfolding Rate Constants vs Time (Variable Rates)
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Probability of Being Folded and Unfolded vs Time (Variable Rates)
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Characteristic relaxation
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