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A central idea in physics of complex systems is that, non-equilibrium
(relaxation) phenomena can be modeled by a CTMC where the states are
local minima of a multidimensional surface called energy landscape.
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The Energy Landscape Approach

The energy landscape models all possible configurations as points on
a multidimensional surface with many local minima
(stable/metastable states) and barriers (transition states).

This framework naturally separates:

Fast vibrational relaxations within basins.
Slow transitions between basins (configurational changes).

It provides physical insight into how materials relax and evolve over
time.

References: Stillinger & Weber, Science, 1984; Mauro et al., J. Chem. Phys., 2012.
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Master Equation

The evolution of the basin occupation probabilities over time, t, is
governed by a set of coupled differential equations known as master
equations:

d

dt
pi (t) =

Ω∑
j ̸=i

Kji [T (t)] pj(t)−
Ω∑
j ̸=i

Kij [T (t)] pi (t)

Using transition state theory, each element of the transition rate matrix
can be calculated as:

Kij [T (t)] = νij exp

[
−
Uij − Ui

kT (t)

]
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Q-Matrix Formulation

The master equation can be written in matrix form as a Q-matrix equation:

d

dt
p(t) = Q[T (t)]p(t)

where p(t) is the vector of occupation probabilities and Q[T (t)] is the
transition rate matrix (Q-matrix).
The elements of the Q-matrix are given by:

Qij [T (t)] =

{
Kji [T (t)] for i ̸= j ,

−
∑

k ̸=i Kik [T (t)] for i = j ,

with Kij [T (t)] defined as before.
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Solution via Matrix Exponential

For constant temperature T , the formal solution to the master equation is:

p(t) = exp(−Q[T ] t)p(0)

where exp(−Q[T ] t) denotes the matrix exponential of −Q[T ] t.
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Why Solvable Mathematical Models for Glass Relaxation

Glass relaxation is a key scientific and technological challenge—crucial
for predicting stability and long-term behavior of materials.

Direct simulations on experimental timescales are unfeasible for
complex glasses.

The system’s enthalpy (energy) landscape is extremely complex,
involving a huge number of possible configurations and transitions.

Reference: Mauro et al., Minimalist Model of Relaxation in Glass, J. Chem. Phys., 2012.
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The Case for Minimalist (Solvable) Models

Too many states: The number of energy minima and barriers is
astronomically large—far too big to enumerate or analyze directly.

Simulations are limited: Molecular Dynamics (MD) can only reach
nanosecond timescales, but glass relaxation occurs over much longer
periods (seconds to years).

Statistical models help... but: They avoid the timescale problem,
but are often very difficult to solve or generalize to real materials.

Solution:

Develop simple, analytically solvable models that:

Capture the essential features of glass relaxation.

Can be solved exactly (not only simulated).

Allow us to study the influence of barriers, entropy, and temperature.

Reference: Mauro et al., J. Chem. Phys., 2012.
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Degeneracy in Native and Unfolded Basins

Native basin: The native state is not a single structure, but an
ensemble of rapidly interconverting, nearly isoenergetic
conformations.1

Unfolded basin: The unfolded state also consists of a heterogeneous
ensemble of conformations, separated by barriers of various heights,
with rapid transitions between them.2

Modeling perspective: Both basins can be described as clusters of
(quasi-)degenerate states, justifying hierarchical models with multiple
barrier scales.3

This supports the use of models with two metabasins, each containing many
(nearly) degenerate substates separated by multi-scale energy barriers.

1
A.N. Yakubovich et al., Biochim. Biophys. Acta, 2004; see also Onuchic & Wolynes, Curr. Opin. Struct. Biol., 2004.

2
L. S. Itzhaki et al., Protein Science, 2006; F. Ding et al., PNAS, 2005.

3
J. E. Shea et al., Annu. Rev. Phys. Chem., 1999; F. Ding et al., PNAS, 2005.
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Why Study Time-Dependent Energy Landscapes?

Real materials and biomolecules experience changing
environments.

In glasses, relaxation dynamics depend on the ”temperature
path”—the history of how temperature changes with time.4

In proteins, both the energy landscape and transition rates can vary
over time due to:

Artificial modulation (e.g., controlled temperature ramps)
Intracellular interactions and physiological processes
Environmental fluctuations

Time-dependent rates are key to understanding non-equilibrium
dynamics and memory effects.

4
Mauro et al., J. Chem. Phys., 2012
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The p-adic Numbers and the p-adic Norm

Let Q be the set of rational numbers.

For a prime p, the p-adic norm of x = a
b ̸= 0 is defined as

|x |p = p−ν(x), where a
b = pν a′

b′ for some integer ν and coprime a′, b′.

The norm extends by setting |0|p := 0.

The completion of Q with respect to | · |p gives the field Qp of p-adic
numbers.
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Properties of Qp

(Qp, | · |p) is an ultrametric space:

|x + y |p ≤ max{|x |p, |y |p}

There is a Haar measure dx on Qp.

Every x ∈ Qp can be written as a convergent Laurent series:

x =
∞∑
k=ν

xkp
k , xk ∈ {0, . . . , p − 1}

The unit ball is Zp := {x ∈ Qp : |x |p ≤ 1}.
A function w : Qp → R is called radial if w(x) = w(|x |p).
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Finite p-adic Groups and Ball Decomposition

The finite group Gn := Zp/p
nZp consists of elements

Gn ∋ x = a0 + a1p + · · ·+ an−1p
n−1, ai ∈ {0, . . . , p − 1}

Zp decomposes as a disjoint union:

Zp =
⊔
a∈Gn

a+ pnZp
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Tree Representation of Gn for p = 2
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Figure: Tree representation of G3 for p = 2
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The p-adic Ball Operator

Let

WZp f (x , t) =

∫
Zp

w(|x − y |) [f (y , t)− f (x , t)] dy .

As n → ∞, we obtain the evolution equation:

d

dt
f (x , t) =

∫
Zp

w(|x − y |) [f (y , t)− f (x , t)] dy .
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Finite Dimensional Approximation

Let Vn = SpanC{φa(x) := pn1a+pnZp(x)}, where 1a+pnZp(x) is the
indicator function of the ball a+ pnZp.

Then Vn
∼= Cpn .

A.Moran-Ledezma Time-Varying Energy Landscapes and Temperature Paths: Dynamic Transition Rates in Locally Ultrametric Complex SystemsBelgrade, 2025 22 / 49



Matrix Representation

With respect to the basis {φa}a∈Gn , the matrix representation is

⟨φb,WZpφa⟩L2(Zp) = w(|a− b|p), for a ̸= b,

⟨φa,WZpφa⟩L2(Zp) = −γa,

where γa =
∑

b∈Gn,b ̸=a w(|a− b|p).
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Master Equation for the Finite System

The system restricted to Vn yields a master equation for a continuous time
Markov chain:

d

dt
φ(t) = W

(n)
Zp
φ(t),

where φ(t) ∈ Cpn and the matrix entries are

(W
(n)
Zp

)a,b =

{
w(|a− b|p), if a ̸= b

−γa, if a = b
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m1 m2 m3 m4 m5 m6 m7 m8

w3
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Energy

Configuration space
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

w0 w3 w2 w2 w1 w1 w1 w1

w3 w0 w2 w2 w1 w1 w1 w1

w2 w2 w0 w3 w1 w1 w1 w1

w2 w2 w3 w0 w1 w1 w1 w1

w1 w1 w1 w1 w0 w3 w2 w2

w1 w1 w1 w1 w3 w0 w2 w2

w1 w1 w1 w1 w2 w2 w0 w3

w1 w1 w1 w1 w2 w2 w3 w0


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When n increase, the number number of barriers and the depth increase.
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Master Equation with Time-Dependent Transition Function

We propose to study the dynamics generated by a master equation of the
form:

d

dt
f (x , t) =

∫
KN

[w(x , y , t)f (y , t)− w(y , x , t)f (x , t)] dy ,

where

KN =
⊔
I∈V

I + Zp.

and w : KN × KN × (0,∞) → (0,∞) is a not necessarily symmetric
function .
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In this work, W.A. Zuñiga-Galinda use two functions
w(x |y),w(y , x) ∈ C (KN × KN) satisfying w(x |y) ≤ w(y |x). Here
w(x , y) ≥ 0 is one function not necessarily symmetric.
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Time-Dependent p-adic Transition Function

Definition

A time-dependent p-adic transition function
w : KN × KN × (0,∞) → (0,∞) is a function of the form:

w(x , y , t) =
∑
I ,J∈V

wI ,J(x , y , t) Ω(p
N |x − I |p) Ω(pN |y − J|p)

where:

wI ,I (x , y , t) = w(|x − y |p, t) are bounded radial functions,

wI ,J(x , y , t) = wI ,J(t) for I ̸= J.
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Block Structure of the Transition Rate Matrix

The transition rate matrix is given by

W(t) = (PI ,J(t)) ,

where each diagonal block PII (t) has the Parisi matrix form:

w0(t) w3(t) w2(t) w2(t) w1(t) w1(t) w1(t) w1(t)
w3(t) w0(t) w2(t) w2(t) w1(t) w1(t) w1(t) w1(t)
w2(t) w2(t) w0(t) w3(t) w1(t) w1(t) w1(t) w1(t)
w2(t) w2(t) w3(t) w0(t) w1(t) w1(t) w1(t) w1(t)
w1(t) w1(t) w1(t) w1(t) w0(t) w3(t) w2(t) w2(t)
w1(t) w1(t) w1(t) w1(t) w3(t) w0(t) w2(t) w2(t)
w1(t) w1(t) w1(t) w1(t) w2(t) w2(t) w0(t) w3(t)
w1(t) w1(t) w1(t) w1(t) w2(t) w2(t) w3(t) w0(t)


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Off-Diagonal Blocks

The off-diagonal blocks are given by

PIJ(t) =



wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)
wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)
wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)
wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)
wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)
wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)
wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)
wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t) wIJ(t)


for I ̸= J.
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Theorem

Let w(x , y , t) be a time-dependent p-adic transition function such that the
functions w(x , y , t) is uniformly continuous. Then there exists a probability
transition function P(t, x ; s, ·), where (t, x , s) ∈ [0,T ]× K × [0,T ], and
s ≤ t, on the Borel σ-algebra of K , such that the Cauchy problem{

∂u
∂t (x , t) =

∫
KN

[w(x , y , t)u(y , t)− w(y , x , t)u(x , t)] dy

u(x , s) = u(x) ∈ C (KN),

has a unique solution satisfying:

E[φ(Xt) | Xs ∼ u(x) dx ] =

∫
KN×KN

φ(y)P(t, x ; s, dy)u(x)dx =

∫
KN

φ(x)u(x , t)dx

In addition, P(t, x ; s, ·) is the transition function of a strong Markov
process.
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Summary of the Proof

Fix t0 > 0 and define w0(x , y) = w(x , y , t0).

The operator W∗u(x) =
∫
KN

w0(x , y)[u(y)− u(x)]dy generates a

Feller semigroup (Hille-Yosida theorem):

(a) The range of λ0 −W∗ is dense in C (KN).
(b) Maximum principle: if f attains its maximum at x0, then
W∗f (x0) < 0.

The time-dependent operator W∗(t) generates a Feller evolution,
yielding a strong Markov process with transition probabilities
P(t, x ; s, dy).

The evolution families of W(t) and its adjoint W∗(t) are dual in
L2(KN):∫

KN

(PW∗(t, s)f )(x)g(x)dx =

∫
KN

f (x)(PW(t, s)g)(x)dx

Consequently, for a solution u(x , t) of the Cauchy problem,

E[φ(Xt)|Xs ∼ u(x)dx ] =

∫
KN

φ(x)u(x , t)dx
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Theorem

Let w(x , y , t) be a time-time dependent p-adic transition function
satisfying the hypothesis of Theorem 2. Then the solution of the Cauchy
problem (with initial condition at s) is given by

u(x , t + s)u0(x) = û(x , t + s)

+
∑

supp(Ψj,I ,r )⊂KN

Cr ,I ,j(s)e
−

∫ t
s γI ,r (τ)dτψj ,I ,r (x),

where t ≥ s, and the coefficients Cr ,I ,j(s) are uniquely determined by the
initial condition.

Here:

γI ,r (t) =

∫
Zp\pr−1Zp

wII (|x |p, t)dx + pr−1w(pr , t) +
∑
J∈V

wIJ(t)
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Frame Title

Where
û(x , t)

is the solution of the CTMC attached to the matrix wI ,J(t) (the
transitions between metabasins only.
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We have the decomposition

L2(KN) = C|V | ⊕ L0(KN).

For any f ∈ L2(KN) denote by f̂ the projection of f in the space
C|V | ∼= span{1a+Zp}a∈V . Then, we have

f (x) = f̂ +
∑

supp(Ψj,I ,r )⊂KN

Cj ,I ,rψj ,I ,r .

A.Moran-Ledezma Time-Varying Energy Landscapes and Temperature Paths: Dynamic Transition Rates in Locally Ultrametric Complex SystemsBelgrade, 2025 38 / 49



In a two metabasin model: Zp and a+ Zp, with initial condition
u(x) = 1p−r0Zp

(x) the characteristic relaxation is given by

S(t) = p−r0p1(t) + p−r0
∑

Supp ψr,j,n ̸⊂BU

|Cr ,j ,n|2e−
∫ t
0 γr,U(τ)dτ
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Thank you!!
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