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The second law of thermodynamics and Eyring’s formula of
kinetics in learning

Learning by the stochastic gradient Langevin dynamics (SGLD)

Grokking (delayed generalization) is discussed as Brownian motion



Gradient descent — numerical solution of the differential
equation

dx

dt
= −∇f (x),

the trajectory goes to a local minimum f .
With numerical iteration of the descent, the vector x will change as

xk+1 = xk − αk∇f (xk).



The stochastic gradient Langevin dynamics, SGLD

xk+1 = xk + wk − αk∇f (xk),

wk – independent mean zero gaussian random vectors.
The stochastic differential equation (SDE)

dξi (t) =
√
2θdw i (t)− ∂f (ξ(t))

∂x i
dt, (1)

dw i (t) stochastic differential of a Wiener process

dw i (t)dw j(t) = δijdt.

G. Parisi, Correlation functions and computer simulations, Nuclear
Physics B, 180(3), 378–384 (1981).

G. Parisi, Correlation functions and computer simulations II,
Nuclear Physics B, 205 (3), 337–344 (1982).



Random Walk

dξi (t) =
√
2θdw i (t)− ∂f (ξ(t))

∂x i
dt.

Fokker–Planck equation — diffusion in potential

∂u

∂t
= θ∆u +∇u · ∇f + u∆f , (2)

where x ∈ Rd , u = u(x , t) is the distribution, f = f (x) is the
potential, f ∈ C 2(Rd), θ > 0 is the temperature.

∂u

∂t
= θ div

[
e−βf grad

[
ueβf

]]
,

Gibbs distribution e−βf , β = 1/θ is a stationary solution.



Chemical kinetics
The Eyring formula of kinetic theory describes the rate of reaction
(transition between two potential wells due to diffusion (2)): the
reaction rate is proportional to

e−β(F1−F0), (3)

where F1 is the free energy of the transition state (the saddle area
between two potential wells) and F0 is the free energy of the initial
state of the reaction (the potential well from which the transition
occurs).
The free energy of a state is F = E − θS , where E is the energy
and S is the entropy of the state, in general

e−βF (U) =

∫
U
e−βE(x)dx .



Learning problem
Let a training sample {zl}, l = 1, . . . , L and a loss function
L(z , x) ≥ 0 be given for test z and hypothesis x (let the
hypothesis space be Rd). Empirical risk minimization is a problem

f ({z}, x) = 1

L

L∑
l=1

L(zl , x) → min
x

. (4)

Overfitting is the lack of ability to generalize to a learning problem
(4) when the sample {z} is replaced. Let the hypothesis x0 provide
a minimum of the functional f ({z}, x). Overfitting: low risk on
the training sample f ({z}, x0), high risk f ({z ′}, x0) for the control
sample {z ′}.
Narrow (sharp) minima of empirical risk (in the hypothesis space)
are associated with overfitting, and wide (flat) minima correspond
to solutions with generalization.
S.Hochreiter, J.Schmidhuber, Flat Minima, Neural Computation 9,
1–42 (1997).



Stochastic Gradient Descent
The learning problem (4)

f ({z}, x) = 1

L

L∑
l=1

L(zl , x) → min
x
;

SGLD (1) in the hypothesis space

dξi (t) =
√
2θdw i (t)− ∂f (ξ(t))

∂x i
dt,

and the diffusion in a potential (2)

∂u

∂t
= θ∆u +∇u · ∇f + u∆f .

The distribution u(x) converges to a Gibbs distribution
concentrated in wells with low free energy.



Free energy of a well is a combination of depth and width

F = E − θS .

Eyring’s formula (3) for the reaction rate

e−β(F1−F0)

predicts capture of the SGLD learning result by wide potential
wells, i.e. the overfitting reduction.

S. V. Kozyrev, I. A. Lopatin, A. N. Pechen, Control of Overfitting
with Physics, Entropy, 26, 1090 (2024). arXiv: 2412.10716



Grokking (delayed generalization)

[1] A. Power, Y. Burda, H. Edwards, I. Babuschkin, V. Misra,
Grokking: Generalization Beyond Overfitting on Small Algorithmic
Datasets, arXiv:2201.02177 (2022)

Overparameterized model, algoritmic dataset, delayed
generalization.

Modular arithmetics (in particular addition modulo p) — maximal
size of the learning sample is p2.



Figure: 1. Grokking: A dramatic example of generalization far after
overfitting on an algorithmic dataset. The red curves show training
accuracy and the green ones show validation accuracy. Training accuracy
becomes close to perfect at 103 optimization steps, but it takes close to
106 steps for validation accuracy to reach that level, and we see very
little evidence of any generalization until 105 steps.



Figure: 2. Training time required to reach 99% validation accuracy
increases rapidly as the training data fraction decreases.

Exponential growth of grokking time with decreasing training
sample (logarithmic coordinate scale).



Figure: 3. t-SNE projection of the output layer weights from a network
trained on modular addition. The lines show the result of adding 8 to
each element. The colors show the residue of each element modulo 8.

Embeddings for residues for modular addition approximately lie of
a circle, addition is a shift along such a circle.
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Figure: 4. Weight norm is highly correlated with overfitting and
generalization. When overfitting happens, the weight norm increases;
when generalization happens, the weight norm decreases.

Ziming Liu, Eric J. Michaud, Max Tegmark, Omnigrok: grokking
beyond algorithmic data, Conference paper at ICLR 2023,
arXiv:2210.01117



Grokking: Overparameterized networks, delayed generalization, and
”structure” formation.
Overparameterized models (the dimension of the parameter space
is large) — local minima merge into a region (manifold) of zero
risk in the hypothesis space

f ({z}, x) = 1

L

L∑
l=1

L(zl , x), L(z , x) ≥ 0.

Zero risk manifold is the intersection of L(z , x) = 0 over the
sample {z}

f ({z}, x) = 0, i.e. L(z , x) = 0, ∀z ∈ {z}.

The zero-risk manifold contains narrows, or ravines (areas with low
entropy) and wide valleys (with high entropy).
The correct solution (”structure”) most likely lies in the
high-entropy region.



Explanation of Fig. 1
Sample memorization — reaching the zero-risk region
f ({z}, x) = 0 by stochastic gradient descent with non-zero
gradient (drift ∼ t).
Grokking — random walk in the region of zero risk f ({z}, x) = 0
(Brownian motion ∼

√
t).

The second law of thermodynamics explains the transition to
regions with high entropy containing the solution of the learning
problem (transition from narrows to wide valleys).

It is notable that the number of stochastic gradient steps required
for grokking is the square of the memorization time (103 and 106).
During the memorization and grokking, close distances are covered
in the hypothesis space, but in different modes
(drift ∼ t, Brownian motion ∼

√
t).



Explanation of Fig. 2
As the training sample {z} grows, the zero-risk manifold
f ({z}, x) = 0 shrinks — additional conditions L(z , x) = 0 for
z ∈ {z} are imposed.

A solution in the form of an algorithm (”structure”) exists for any
training sample ⇒ as the training sample grows, the zero-risk
manifold shrinks toward a region with high entropy containing the
desired solution in the form of an algorithm.

Let us assume: imposing each additional condition L(z , x) = 0,
z ∈ {z} with increasing sample size removes an equal percentage
of the volume ⇒ the entropy of the zero-risk region decreases
linearly with increasing sample size.



Grokking: transition from the initial region (part of the zero-risk
manifold where the Brownian motion of grokking begins) to the
grokking region (a valley with high entropy, the neighborhood of
the solution of the learning problem in the form of a ”structure”).

Eyring’s formula e−β(F1−F0) gives an approximation of the
dependence of the reciprocal of the grokking time on the sample
size. Here F0 and F1 are the free energies of the initial region of
grokking and the transition state (the neighborhood of the
solution).

The entropy of the initial region decreases linearly with increasing
sample size (free energy F0 = E0 − θS0 increases linearly). Free
energy F1 of the transition region changes slightly with increasing
sample size. Consequently, the grokking time decreases
exponentially, see Fig. 2.

S. V. Kozyrev, How to explain grokking, arXiv:2412.18624



Summary

Learning by SGLD, search for a potential well with low free energy

Eyring’s formula of kinetic theory — capture of a system by wide
potential wells

Reduction of overfitting in the wide minima approach

Grokking (delayed generalization) as a Brownian motion

Transition to generalization by the second law of thermodynamics

Quadratic relationship between memorization and grokking times
(drift ∼ t, Brownian motion ∼

√
t)

Exponential dependence of grokking time on sample size —
decrease in entropy of the zero-risk manifold with increasing
sample size

Learning as a quasi-physical dynamics


