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Lagrangian systems with gyroscopic forces

Let (Q,G) be a Riemannian manifold, and let is given a Lagrangian
system (Q, L1), where D a nonintegrable distributon of the tangent
bundle TQ, and L1 is Lagrangian

L1(q, q̇) =
1
2
(G(q̇), q̇) + (A, q̇)− V (q),

where A is a one-form on Q.
A path q(t) is a motion of the natural mechanical system (Q, L1) if
it satisfies the Lagrange-d’Alembert equations

δL1 =
(∂L1

∂q
− d

dt

∂L1

∂q̇
, δq

)
= 0, for all δq ∈ TqQ.



This is equivalent to

δL =
(∂L
∂q

− d

dt

∂L

∂q̇
, δq

)
= F(q̇, δq), for all δq ∈ TqQ,

where L is the part of the Lagrangian L1 without the term linear in
velocities

L(q, q̇) =
1
2
(G(q̇), q̇)− V (q).

Here the additional force F(q̇, δq) is defined as the exact two-form

F = dA.

One can consider a more general class of systems where an
additional force is given as a two-form which is closed, but not need
to be exact (magnetic force).



Hamiltonian description
Let (q1, . . . , qn) be local coordinates on Q in which the metric G is
given by the quadratic form

∑
ij gijdqi ⊗ dqj ,

L(q, q̇) =
1
2

∑
gij q̇i q̇j − V (x),

F =
∑
i<j

fijdqi ∧ dqj .

We also introduce the Hamiltonian function

H(q, p) =
1
2
(p,G−1(p)) + V (q) =

1
2

∑
G ijpipj + V (q),

as the usual Legendre transformation of L. Here
(p1, . . . , pn, q1, . . . , qn) are the canonical coordinates of the
cotangent bundle T ∗Q,

pi = ∂L/∂q̇i =
∑
j

gij q̇j ,

and {g ij} is the inverse of the metric matrix {gij}.



In canonical coordinates the equations take the form

q̇i =
∂H

∂pi
=

n∑
j=1

g ijpj , (1)

ṗi = −∂H

∂qi
+

n∑
j=1

fij(q)
∂H

∂pj
. (2)

Let z = (q, p). The reduced equations (1), (2) on the cotangent
bundle T ∗Q can be written in the Hamiltonian form

ż = XH , iXH
(Ω + F) = −dH, (3)

where Ω is the canonical symplectic form on T ∗Q:

Ω = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn (4)



The Kirillov-Konstant symplectic form on adjoint orbits.

Consider the (co)adjoint action of G and the G -orbit

O(a) = {x = Adg (a) = g · a · g−1 | g ∈ G}

through an element a ∈ g. The adjoint orbit as a homogeneous
space G/Ga, where Ga is the isotropy group of a. Since G is a
compact connected Lie group, Ga is also connected. We have

ann(a) = {ξ ∈ g, [ξ, a] = 0} = TeGa.

By definition, the Kirillov-Konstant symplectic form ΩKK on G/Ga

is a G–invariant form, given at the point π(e) ∈ G/Ga by

ΩKK (ξ1, ξ2)|π(e) = −⟨a, [ξ1, ξ2]⟩, ξ1, ξ2 ∈ ann(a)⊥ = [a, g], (5)

where ξ1, ξ2 are considered as tangent vectors to the orbit at π(e).



Magnetic flows on adjoint orbit [A. Bolsinov, B.J.]
Consider the system with the kinetic energy given by the normal
metric ds2

0 on O(a) and the potential function V (x) = −⟨b, x⟩,
i.e., with Hamiltonian

H(x , p) =
1
2
⟨[x , p], [x , p]⟩ − ⟨b, x⟩,

under the influence of the magnetic force field given by ϵΩKK . Here,

T ∗O(a) ⊂ T ∗g = g× g(x , p).

Proposition
The equations of the magnetic pendulum, in redundant variables
(x , p), are given by

ẋ = [x , [p, x ]], (6)
ṗ = [p, [p, x ]] + ϵ[x , p] + b − prann(x) b, (7)



Magnetic spherical pendulum.

As an example, consider the Lie group SO(3). The Lie algebra
so(3) is isomorphic to the Euclidean space R3 with bracket
operation being the standard vector product. The adjoint orbits are
spheres ⟨γ, γ⟩ = const. The phase space:

T ∗S2 = {(γ, p) ∈ R6 |ϕ1 = ⟨γ, γ⟩ = 1, ϕ2 = ⟨γ, p⟩ = 0}.

The magnetic spherical pendulum:

H =
1
2
⟨p, p⟩ − ⟨b, γ⟩,

γ̇ = p, ṗ = ϵγ × p + b + µγ.

Adding the magnetic term ϵρ∗ΩKK represents the influence of the
magnetic monopole with the force equal to ϵγ × p.
The system is completely integrable due to the linear first integral
f = ⟨b, γ × p + ϵγ⟩.



Exact magnetic field in Rn

Standard symplectic space: R2n{γ, p},

Ω = dp1 ∧ dγ1 + · · ·+ dpn ∧ dγn

and the magnetic two-form F

F = s
∑
i<j

κijdγi ∧ dγj , s ∈ R.

F is exact magnetic: F = dAΓ, where

F = dAΓ, AΓ =
s

2

∑
ij

κij(γi + Γi )dγj , Γ = (Γ1, . . . , Γn) ∈ Rn.

The magnetic Poisson brackets on R2n{γ, p}

{F ,G}κ =
∑
i

( ∂F
∂γi

∂G

∂pi
− ∂F

∂pi

∂G

∂γi

)
+ s

∑
i ,j

κij
∂F

∂pi

∂G

∂pj
.



Motion of a material point in a homogeneous magnetic field
The Hamiltonian:

H =
1

2m
⟨p, p⟩.

The magnetic Hamiltonian flow

γ̇ =
∂H

∂p
=

1
m
p,

ṗ =− ∂H

∂γ
+ sκ

(∂H
∂p

)
=

s

m
κp.

For n = 3, we get the usual Lorentz force

ṗ =
s

m
κp =

s

m
κ⃗× p,

where

κ⃗ = (k1, k2, k3) 7−→ κ =

 0 −k3 k2
k3 0 −k1
−k2 k1 0

 .



We can assume that the magnetic form takes the form

F = s(κ12dγ1∧dγ2+κ34dγ3∧dγ4+· · ·+κ2[n/2]−1,2[n/2]dγ2[n/2]−1∧dγ2[n/2]).

If n is even, the system decouples on k = n/2 magnetic systems

γ̇2i−1 =
1
m
p2i−1, ṗ2i−1 =

s

m
κ2i−1,2ip2i ,

γ̇2i =
1
m
p2i , ṗ2i = − s

m
κ2i−1,2ip2i−1.

They are Hamiltonian equations in R4(γ2i−1, γ2i , p2i−1, p2i ) with
respect to the twisted symplectic forms

Ω2i−1,2i+F2i−1,2i = dp2i−1∧gγ2i−1+dp2i∧dγ2i+sκ2i−1,2idγ2i−1∧dγ2i

and the Hamiltonians H2i−1,2i =
1

2m (p2
2i−1 + p2

2i ).
If n = 2k + 1 is odd, along with the k systems listed above, there is
an additional system of one degree of freedom on R2(γn, pn) with
the standard symplectic form and the Hamiltonian Hn = 1

2mp2
n

which generates a uniform motion: γ̇n = 1
mpn, ṗn = 0.



Figure: Three types of trajectories in the homogeneous magnetic field in
R3. The gray lines represent the magnetic field.

For even n, in the case when all |κ2i−1,2i | ≠ 0 are proportional:

m1|κ1,2|−1 = · · · = mn/2|κn−1,n|−1, mi ∈ N,

such that the common divisor of mi is 1, all the trajectories are
closed with the same period

T =
m12πm
|sκ1,2|

= · · · =
mn/22πm
|sκn−1,n|

.



Gauge Noether integrals
We can take a Lagrangian with a term linear in velocities

LΓ1(γ, γ̇) =
m

2
⟨γ̇, γ̇⟩+ s

2

[n/2]∑
i=1

κ2i−1,2i
(
(γ2i−1+Γ2i−1)γ̇2i−(γ2i+Γ2i )γ̇2i−1

)
.

The Lagrangian LΓ1 has the following Noether symmetries

ξ
Γ2i−1,Γ2i
i = (γ2i−1 + Γ2i−1)

∂

∂γ2i
− (γ2i + Γ2i )

∂

∂γ2i−1
,

modulo the gauge terms

− d

dt
s
κ2i−1,2i

2
(
(γ2i−1 + Γ2i−1)

2 + (γ2i + Γ2i )
2), i = 1, . . . , [n/2].

The corresponding gauge Noether first integrals of motion are:

⟨∂L
Γ
1

∂γ̇
, ξ

Γ2i−1,Γ2i
i ⟩+ s

κ2i−1,2i

2
(
(γ2i−1 + Γ2i−1)

2 + (γ2i + Γ2i )
2).

In the Hamiltonian description, they take the form

Φ
Γ2i−1,Γ2i
2i−1,2i = (γ2i−1+Γ2i−1)p2i−(γ2i+Γ2i )p2i−1+s

κ2i−1,2i

2
(
(γ2i−1+Γ2i−1)

2+(γ2i+Γ2i )
2).



Restrictions to the unit sphere
We work in redundant coordinates and consider the phase space
T ∗Sn−1 as a submanifold of R2n(γ, p) given by the equations

ϕ1 = ⟨γ, γ⟩ = 1, ϕ2 = ⟨p, γ⟩ = 0,

and endowed with the twisted symplectic form ω + f,
ω = Ω|T∗Sn−1 , f = F|T∗Sn−1 . It is convenient to use the Dirac
magnetic Poisson brackets on

R2n
∗ = {(γ, p) ∈ R2n |ϕ1 ̸= 0}

defined by

{F ,G}d = {F ,G}κ − {F , ϕ1}κ{G , ϕ2}κ − {F , ϕ2}κ{G , ϕ1}κ

{ϕ1, ϕ2}κ
.

The constraint functions ϕ1 and ϕ2 are Casimir functions of the
Dirac brackets. The symplectic leaf ϕ1 = 1, ϕ2 = 0 within
(R2n

∗ (γ, p), {·, ·}d) coincides with (T ∗Sn−1, ω + f).



Magnetic geodesic flow

The Hamiltonian:
H =

1
2m

⟨p, p⟩.

By taking H∗ = H − λ1ϕ1 − λ2ϕ2, we obtain the magnetic
Hamiltonian flow

γ̇ =
∂H∗

∂p
=

1
m
p − λ2γ,

ṗ =− ∂H∗

∂γ
+ sκ

(∂H∗

∂p

)
= 2λ1γ + λ2p +

s

m
κp − sλ2κγ.

Here, from the condition that ϕ1 and ϕ2 are first integrals of the
flow, the Lagrange multipliers can be calculated to get

λ1 =
s
m ⟨p, κγ⟩ − 1

m ⟨p, p⟩
2⟨γ, γ⟩

, λ2 =
1
m

⟨p, γ⟩
⟨γ, γ⟩

.



From now on, we consider a basis [e1, . . . , en] of Rn, such that

F = s(κ12dγ1∧dγ2+κ34dγ3∧dγ4+· · ·+κ2[n/2]−1,2[n/2]dγ2[n/2]−1∧dγ2[n/2]),

κ2i−1,2i ≥ 0. Thus, the system becomes

γ̇2i−1 =
1
m
p2i−1, ṗ2i−1 =

s

m
κ2i−1,2ip2i + µγ2i−1,

γ̇2i =
1
m
p2i , ṗ2i = − s

m
κ2i−1,2ip2i−1 + µγ2i , i = 1, . . . , [n/2],

for n even, and, for n odd, there is an additional equation:

γ̇n =
1
m
pn, ṗn = µγn.

The multiplier is given by

µ =
s

m

[n/2]∑
i=1

κ2i−1,2i (p2i−1γ2i − p2iγ2i−1)− 2H.



Note that the gauge Noether symmetries (14) are tangent to the
sphere Sn−1 for Γ = 0, leading to the following statement.

Lemma
The functions

Φ2i−1,2i = Φ0,0
2i−1,2i = γ2i−1p2i − γ2ip2i−1 + s

κ2i−1,2i

2
(
γ2

2i−1 + γ2
2i
)
.

are first integrals of motion of the magnetic flows. The first
integrals of motion Poisson commute:

{Φ2i−1,2i ,Φ2j−1,2j}d = 0, i , j = 1, . . . , [n/2]

on the Poisson manifold (R2n
∗ (γ, p), {·, ·}d).

We thus get the following theorem

Theorem
Assume κ12 ̸= 0. The magnetic flows are completely integrable on
S2 and S3, corresponding to n = 3 and n = 4 respectively.



Integral of the third degree in momenta

Lemma
(i) The function J given by

J =
s2

m2

[n/2]∑
i=1

κ2
2i−1,2i (p

2
2i−1 + p2

2i )− µ2

is the first integral of motion of the magnetic flows on T ∗Sn−1.

(ii) The following commuting relations on the Poisson manifold
(R2n

∗ (γ, p), {·, ·}d) among the first integrals J, Φ2i−1,2i take place:

{J,Φ2i−1,2i}d = 0, i = 1, . . . , [n/2].

(iii) The functions H, J, Φ2i−1,2i , i = 1, . . . , [n/2] are functionally
independent on T ∗Sn−1 for n ≥ 5 for all odd n and all κ and if n is
even and κ does not satisfy κ12 = κ34 = · · · = κn−1,n.



U(2)–symmetry

Lemma
If κ2i−1,2i = κ2j−1,2j , i < j , then the following functions

Ψ1
2i−1,2i ;2j−1,2j =(γ2ip2j−1 − γ2j−1p2i )− (γ2i−1p2j − γ2jp2i−1)

− sκ2i−1,2i (γ2i−1γ2j−1 + γ2iγ2j)

Ψ2
2i−1,2i ;2j−1,2j =(γ2i−1p2j−1 − γ2j−1p2i−1) + (γ2ip2j − γ2jp2i )

− sκ2i−1,2i (γ2i−1γ2j − γ2iγ2j−1)

are the first integrals of motion of the magnetic geodesic flow on
T ∗Sn−1.



Lemma
The polynomials

Φ2i−1,2i , Φ2j−1,2j , Ψ
1
2i−1,2i ;2j−1,2j , Ψ

2
2i−1,2i ;2j−1,2j

generate the following four-dimensional Lie algebra

{Φ2i−1,2i ,Φ2j−1,2j}d = 0,

{Φ2i−1,2i ,Ψ
1
2i−1,2i ;2j−1,2j}d = −Ψ2

2i−1,2i ;2j−1,2j ,

{Φ2j−1,2j ,Ψ
1
2i−1,2i ;2j−1,2j}d = Ψ2

2i−1,2i ;2j−1,2j ,

{Φ2i−1,2i ,Ψ
2
2i−1,2i ;2j−1,2j}d = Ψ1

2i−1,2i ;2j−1,2j ,

{Φ2j−1,2j ,Ψ
2
2i−1,2i ;2j−1,2j}d = −Ψ1

2i−1,2i ;2j−1,2j ,

{Ψ1
2i−1,2i ;2j−1,2j ,Ψ

2
2i−1,2i ;2j−1,2j}d = 2Φ2j−1,2j − 2Φ2i−1,2i .

on the Poisson manifold (R2n
∗ (γ, p), {·, ·}d). The Lie algebra is

isomorphic to the reductive Lie algebra so(3)⊕ R ∼= u(2).



Theorem (Integrability for n ≤ 6)
Assume κ12 ̸= 0. The magnetic geodesic flows are Liouville
integrable on T ∗S4 and T ∗S5, corresponding to n = 5 and n = 6
respectively, for any κ. Moreover:

(i) If n = 5 and κ12 = κ34, then the magnetic system is integrable
in the non-commutative sense: generic motions are quasi-periodic
over 3-dimensional invariant isotropic submanifolds.

(ii) If n = 6 and κ12 = κ34 ̸= κ56, then the magnetic system is
integrable in the non-commutative sense: generic motions are
quasi-periodic over 4-dimensional invariant isotropic submanifolds.

(iii) If n = 6 and κ12 = κ34 = κ56, then the magnetic system is
integrable in the non-commutative sense: generic motions are
quasi-periodic over 3-dimensional invariant isotropic submanifolds.

(iv) For n = 5, κ34 = 0 and for n = 6, κ34 = κ56 = 0, the
magnetic systems are integrable in the non-commutative sense:
generic motions are quasi-periodic over 3-dimensional invariant
isotropic submanifolds.



Rolling of a ball over a sphere with a gyroscope

Let us consider rolling without slipping of a balanced, dynamically
nonsymmetric ball over a fixed sphere. Let OB, a, m,
I = diag(A,B,C ), be the center, radius, mass of the system
ball+gyroscope and the inertia operator of a ball B, and let b is
radius of the sphere. We assume that a gyroscope is placed in a
ball B such that the mass center of the system (ball + gyroscope)
coincides with the geometric center OB of the ball.
There are three possible configurations:
(i) rolling of B over the outer surface of S and S is outside B;
(ii) rolling of B over the inner surface of S (b > a);
(iii) rolling of B over the outer surface of S and S is within B; in

this case b < a and the rolling ball B is a spherical shell.



Let ε = b
b±a , where we take "+" for the case (i) and "−" in the

cases (ii) and (iii) and let D = ma2.

Figure: Rolling of the ball B with center OB over the sphere S with center
O: three scenarios

Borisov Fedorov (1995), Borisov Mamaev (2013)



Vasilije Grigoryevich Demchenko (1898-1972) in 1923 defended
PhD thesis

Rolling of gyroscopic ball over the sphere, University of
Belgrade, 1923, 94 pages

Committee: Anton Bilimović, Mihailo Petrović Milutin Milanković.





Let the modified inertia operator I = I+ DIdso(n) (D = ma2) be
equal to the identity operator on so(n) multiplied by a constant τ .

Proposition
The equations of motion of the n-dimensional generalized
Demchenko case without twisting are:

τ ω̇ = [κ, ω] + λ0, γ̇ = −εωγ,

where κ ∈ so(n) is a fixed skew-symmetric matrix and the Lagrange
multiplier λ0 ∈ (Rn ∧ γ)⊥ is determined from the condition that
ω ∈ Rn ∧ γ. The equations of motion reduce to the cotangent
bundle of the sphere ⟨γ, γ⟩ = 1:

γ̇ =
ε2

τ
p, ṗ =

1
τ
κp + µγ, µ =

1
τ
⟨p, κγ⟩ − ε2

τ
⟨p, p⟩

The magnetic flow with m = τ/ε2 and s = 1/ε2 (s/m = 1/τ).



Three-dimensional Demchenko case without twisting
The reduced equations of motion on T ∗S2, for

κ = κ12e1 ∧ e2,

become

γ̇1 =
ε2

τ
p1, ṗ1 =

1
τ
κ12p2 + µγ1,

γ̇2 =
ε2

τ
p2, ṗ2 = −1

τ
κ12p1 + µγ2,

γ̇3 =
ε2

τ
p3, ṗ3 = µγ3,

µ =
κ12

τ
(p1γ2 − p2γ1)−

ε2

τ
(p2

1 + p2
2 + p2

3),

They are Hamiltonian with respect to the magnetic Poisson
structure and the Hamiltonian is

h =
ε2

2τ
(p2

1 + p2
2 + p2

3).



Theorem
The reduced equations of the Demchenko case without twisting are
Liouville integrable on T ∗S2 with the first integrals h, Φ, where

Φ(γ, p) = γ1p2 − γ2p1 +
κ12

2ε2 (γ
2
1 + γ2

2).

Theorem
The reduced equations of the three-dimensional Demchenko case
without twisting can be explicitly integrated in elliptic functions and
their degenerations.
Saksida (2002)



Let us introduce polar coordinates r , φ by

γ1 = r cosφ, γ2 = r sinφ.

In the new coordinates the first integrals can be rewritten as:

h =
τ

2ε2

(
ṙ2 + r2φ̇2 +

r2ṙ2

1 − r2 ), (8)

Φ =
τ

ε2 r
2φ̇+

κ12

2ε2 r
2. (9)

We have

φ̇ =
2ε2Φ− κ12r

2

2τ r2 .

Introducing u = r2, one derives

u̇2 = Q3(u),

Q3(u) : =
κ2

12
τ2 (u − 1)

(
u2 − 4ε2

κ2
12
(2hτ + κ12Φ)u +

4ε4Φ2

κ2
12

)
=

κ2
12
τ2 (u − 1)(u − u1)(u − u2).



From Vieta’s formulas, it follows that u1u2 > 0, or in other words,
the remaining two roots u1, u2 of Q3 are of the same sign.
(A) 0 < u1 < u2 < 1; Case (A) happens when the discriminant of

the polynomial Q2(u) = (u − u1)(u − u2) is greater then zero,
the minimum of Q2(u) is between 0 and 1, and Q2(1) > 0.
This yields conditions:

hτ + κ12Φ > 0,

2hτ + κ12Φ <
κ2

12
2ε2 ,

2hτ + κ12Φ− ε2Φ <
κ2

12
4ε2

(B) 0 < u1 < 1 < u2. Case (B) happens when Q2(1) < 0, that is

2hτ + κ12Φ− ε2Φ >
κ2

12
4ε2



In both cases r belongs to an annulus:

Case (A)
√
u1 ⩽ r ⩽

√
u2; Case (B)

√
u1 ⩽ r ⩽ 1.

When the discriminant of the polynomial Q3 vanishes, the
corresponding elliptic functions degenerate. It happens if u1 = u2,
or when one of the roots u1, u2 is equal to 1. Direct calculations
show that the discriminant of the polynomial Q3 vanishes when

hτ + κ12Φ = 0, or 2hτ + κ12Φ− ε2Φ =
κ2

12
4ε2 .



Four-dimensional Demchenko case without twisting
Let

κ = κ12e1 ∧ e2 + κ34e3 ∧ e4.

The reduced equations are:

γ̇1 =
ε2

τ
p1, ṗ1 =

1
τ
κ12p2 + µγ1,

γ̇2 =
ε2

τ
p2, ṗ2 = −1

τ
κ12p1 + µγ2,

γ̇3 =
ε2

τ
p3, ṗ3 =

1
τ
κ34p4 + µγ3,

γ̇4 =
ε2

τ
p4, ṗ4 = −1

τ
κ34p3 + µγ4,

µ =
1
τ

(
κ12(p1γ2 − p2γ1) + κ34(p3γ4 − p4γ3)

)
− ε2

τ
(p2

1 + p2
2 + p2

3 + p2
4).

The Hamiltonian is

h =
ε2

2τ
(p2

1 + p2
2 + p2

3 + p2
4).



Theorem
The reduced equations of generalized Demchenko case for n = 4
are Liouville integrable on T ∗S3 with the three first integrals h,
Φ12, and Φ34 in involution, where

Φ12(p, γ) = γ1p2 − γ2p1 +
κ12

2ε2 (γ
2
1 + γ2

2),

Φ34(p, γ) = γ3p4 − γ4p3 +
κ34

2ε2 (γ
2
3 + γ2

4).

Theorem
The reduced equations of generalized Demchenko case without
twisting for n = 4 can be explicitly integrated in elliptic functions
and their degenerations.



Let us introduce new coordinates ρ1, ρ3, φ1, φ3 by

γ1 = ρ1 cosφ1, γ2 = ρ1 sinφ1, γ3 = ρ3 cosφ3, γ4 = ρ3 sinφ3.

In the new coordinates the first integrals become

h =
τ

2ε2

(
ρ̇2
1 + ρ2

1φ̇
2
1 + ρ̇2

3 + ρ2
3φ̇

2
3
)
,

Φ12 =
τ

ε2 ρ
2
1φ̇1 +

κ12

2ε2 ρ
2
1,

Φ34 =
τ

ε2 ρ
2
3φ̇3 +

κ34

2ε2 ρ
2
3.

We have

φ̇1 =
2ε2Φ12 − κ12ρ

2
1

2τρ2
1

, φ̇3 =
2ε2Φ34 − κ34ρ

2
3

2τρ2
3

.



Introducing u = ρ2
1, it follows

u̇2 = P3(u).

Here, P3 is a polynomial in u of the degree not greater than three:

P3(u) := a0u
3 + a1u

2 + a2u + a3,

where

a0 =
κ2

12 − κ2
34

τ2 , a3 = −4ε4Φ2
12

τ2 ,

a1 = −8ε2h

τ
− 2κ34

τ2 (2ε2Φ34 − κ34)−
κ2

12
τ2 − 4ε2κ12Φ12

τ2 ,

a2 =
8ε2h

τ
− (2ε2Φ34 − κ34)

2

τ2 +
4ε2κ12Φ12

τ2 +
4ε4Φ2

12
τ2 .



Let us express the variable ρ2
1 in terms of the Weierstrass

℘-function in a generic case: κ2
12 ̸= κ2

34 and the polynomial P3(u)
has all roots distinct. Introducing z such that

u =
4
a0

z − a1

3a0
,

we have
ż2 = 4z3 − g2z − g3,

where

g2 =
a2
1

12
− a0a2

4
, g3 =

a0a1a2

4
− a3

1
216

− a2
0a3

16
.

We get
∞∫
z

dξ√
4ξ3 − g2ξ − g3

−
∞∫

z0

dξ√
4ξ3 − g2ξ − g3

= ±(t − t0).

Finally, using the Weierstrass ℘-function one obtains

z = ℘(A± (t − t0)), z0 = ℘(A).



Qualitative analysis

Let us consider the case κ2
12 ̸= κ2

34. Then P3(u) is a degree three
polynomial. The coordinates ρ1, φ1 and ρ3, φ3 are polar
coordinates on the projections of the sphere ⟨γ, γ⟩ = 1 to the
coordinate planes Oe1e2 and Oe3e4, respectively. Hence, ρ1 and
ρ3, and consequently u can take values between 0 and 1.
Since

P3(0) = −4ε4Φ2
12

τ2 < 0,

and

P3(1) = −4ε4Φ2
34

τ2 < 0,

one concludes that on interval (0, 1) the polynomial P3(u) has (i)
no real roots; (ii) two distinct real roots; or (iii) one double real
root.



(i)
If the number of real roots is zero, then the polynomial P3(u) takes
negative values on the whole interval (0, 1). Thus, the case (i) does
not correspond to a real motion.
(ii)
In the case (ii) when the polynomial P3(u) has two distinct real
roots u1 < u2 on the interval (0, 1), the projection of a trajectory
to the Oe1e2 and Oe3e4 planes belong, respectively, to the annuli

√
u1 ⩽ ρ1 ⩽

√
u2 and

√
1 − u2

2 ⩽ ρ3 =
√

1 − ρ2
1 ⩽

√
1 − u2

1 .

There are three types of the trajectories in this case. Let

û =
2ε2Φ12

κ34
.

If û belongs to (u1, u2) then φ̇1 changes the sign and trajectories
are presented on Figures 3 and 4. If û is equal to u1 or u2, then the
trajectories are presented on Figures 6 and 5 respectively.
Otherwise, the trajectories are presented on Figure 7.



Figure: The case u1 < û < u2

Figure: The case u1 < û < u2



Figure: The case û = u2

Figure: The case û = u1



Figure: The case when û do not belongs to the interval [u1, u2]



The case of a double root u1 = u2 corresponds to the stationary
motion

ρ1 = const, φ1 = α1t + φ10,

ρ3 =
√

1 − ρ2
1 = const, φ3 = α3t + φ20,

where

α1 =
2ε2Φ12 − κ12u1

2τu1
= const, α3 =

2ε2Φ34 − κ34(1 − u1)

2τ(1 − u1)
= const.

From the equations of motion it follows that the constants α1 and
α3 should satisfy:

κ12α1 − κ34α3 + τ(α2
1 − α2

3) = 0.

Since the roots u1 and u2 of the polynomial P3(u) coincide, the
discriminant of the polynomial P3(u) is equal to zero.
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