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Thus, the vacuum solution in phase III is that of a Zm(n�1)+2 Landau-Ginzburg orbifold of f(x) = 0,
acting with charges (m�2)Q1

+ nQ2.

Phase IV: 0 < r2 <
m�2
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r1, along the branch E12.
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r1, which
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. (10.68) e:SR4

Since xn+1, xn+2 cannot both vanish, their vevs break U2(1) completely, while x0 6= 0 breaks U1(1) !

Zn since Q1
(x0) = �n; correspondingly, (

e:VEVMe:VEVM
10.37c) reduces to |(�n)�1||x0| = 0. This then is a hybrid

phase in which a Landau-Ginzburg Zn orbifold of {(x1, · · ·, xn) : f(x) = 0} is fibered over the P1
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/(
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and x1 parametrizes the exceptional set of the MPCP-desingularization of Pn

(m:···:m:1:1). While r1 > 0, |x1|
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Figure 1. The phase diagram of the GLSM with the Calabi-Yau n-fold ⇢ F (n)
m “geometric” phase;

the “⇤” entries are generally nonzero and are outside the Stanley-Reisner ideal.

Thus, there are four di↵erent phases, as depicted in Figure 1. We now analyze them in
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@f
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vanishes only when r2 = 0, which is the boundary between phases I and II; this suggests that the P1-like
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the charges (m�2)Q1
+nQ2, with respect to which x1 6= 0 has charge �(n�1)m+2 — breaking U(1)

2
⇡

U3(1)⇥U4(1) ! Z(n�1)m+2; finally, x1 6= 0 is neutral with respect to U3(1) generated by the charges
mQ1

+Q2, with respect to which x0 6= 0 has charge �(n�1)m+2 — breaking U(1)
2
⇡ U3(1)⇥U4(1) !

Z(n�1)m+2.

Thus, the vacuum solution in phase III is that of a Zm(n�1)+2 Landau-Ginzburg orbifold of f(x) = 0,
acting with charges (m�2)Q1

+ nQ2.

Phase IV: 0 < r2 <
m�2
n

r1, along the branch E12.
Along the branch E12, x1, · · ·, xn = 0, while xn+1 and xn+2 remain unrestricted. Since x0 6= 0, its elimi-
nation from the D-term constraints (
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r1, which
is positive in the indicated range of (r1, r2). Therefore, xn+1 = 0 = xn+2 must also be excluded, and we
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Since xn+1, xn+2 cannot both vanish, their vevs break U2(1) completely, while x0 6= 0 breaks U1(1) !

Zn since Q1
(x0) = �n; correspondingly, (

e:VEVMe:VEVM
10.37c) reduces to |(�n)�1||x0| = 0. This then is a hybrid

phase in which a Landau-Ginzburg Zn orbifold of {(x1, · · ·, xn) : f(x) = 0} is fibered over the P1
base =�

(xn+1, xn+2)rE3
 
/(
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Figure 45: The first five (m=0, · · · , 4) F (n)
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the plot, and are identical for the n = 2, 4 plots, but differ from their n = 3 counterparts f:nm0-4
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the charges (m�2)Q1
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acting with charges (m�2)Q1
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Phase IV: 0 < r2 <
m�2
n

r1, along the branch E12.
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Figure 43: The phases of the GLSMs with the superpotentials (
e:LWe:LW
0.8), depicted here for n = 2 f:Ph03

10.3.3 VEVss:VEVs

Throughout the above analysis, the vevs |x0|2, |x1|2,
P
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i=2 |xi|
2 and

P2
j=1 |xn+j |

2 play distinct roles. As
seen above, |x0| 6= 0 in the “non-geometric” phases III and IV, including the phase boundary (iv) between
them. In turn, x0 = 0 in the “geometric” phases I and II, as well as the phase boundaries (i), (ii) and (iii)
delimiting them.
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and x1 parametrizes the exceptional set of the MPCP-desingularization of Pn

(m:···:m:1:1). While r1 > 0, |x1|
vanishes only when r2 = 0, which is the boundary between phases I and II; this suggests that the P1-like
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Figure 45: The first five (m=0, · · · , 4) F (n)
m [c1] Kähler structure discriminants for n = 2, 3, 4, defining the “fully

corrected” Kähler phase diagrams; the indicated (✓̂1, ✓̂2) phases are constant for each spike-to-spike segment of
the plot, and are identical for the n = 2, 4 plots, but differ from their n = 3 counterparts f:nm0-4
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Figure 45: The first five (m=0, · · · , 4) F (n)
m [c1] Kähler structure discriminants for n = 2, 3, 4, defining the “fully
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286

m = 0

m = 1

m = 2

m = 3

m = 4

n = 2 n = 3 n = 4

(0, 0) (0, 0)

(0, 0)

(⇡, 0) (⇡, 0)

(0, 0)

(0, 0) (0, 0)

(0, 0)

(0,⇡)(0,⇡)

(0, 0)
(⇡, 0)

(⇡,⇡)(⇡,⇡)

(0, 0)
(0, 0)

(0,⇡)(0,⇡)

(0, 0)
(⇡, 0)

(0, 0)

(0, 0)

(⇡, 0) (⇡, 0)

(⇡, 0)

(0, 0) (0, 0)

(0, 0)

(⇡, 0)

(0,⇡)

(0,⇡)

(⇡,⇡)

(⇡, 0)

(⇡,⇡)

(⇡,⇡)

(⇡,⇡)

(0, 0)

(0,⇡)

(0,⇡)

(⇡,⇡)

(⇡, 0)

(0, 0)

(0, 0)

(⇡, 0)

(⇡, 0)

(⇡, 0)

(⇡, 0)

(⇡, 0)

(0, 0)

(0, 0)

(0, 0)

(⇡, 0)

(⇡, 0)

?

see text
after (

e:ra(r)e:ra(r)
12.4)

?

see text
after (

e:ra(r)e:ra(r)
12.4)

?

see text
after (

e:ra(r)e:ra(r)
12.4)

Figure 45: The first five (m=0, · · · , 4) F (n)
m [c1] Kähler structure discriminants for n = 2, 3, 4, defining the “fully

corrected” Kähler phase diagrams; the indicated (✓̂1, ✓̂2) phases are constant for each spike-to-spike segment of
the plot, and are identical for the n = 2, 4 plots, but differ from their n = 3 counterparts f:nm0-4
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the charges (m�2)Q1
+nQ2, with respect to which x1 6= 0 has charge �(n�1)m+2 — breaking U(1)

2
⇡

U3(1)⇥U4(1) ! Z(n�1)m+2; finally, x1 6= 0 is neutral with respect to U3(1) generated by the charges
mQ1

+Q2, with respect to which x0 6= 0 has charge �(n�1)m+2 — breaking U(1)
2
⇡ U3(1)⇥U4(1) !

Z(n�1)m+2.

Thus, the vacuum solution in phase III is that of a Zm(n�1)+2 Landau-Ginzburg orbifold of f(x) = 0,
acting with charges (m�2)Q1

+ nQ2.

Phase IV: 0 < r2 <
m�2
n

r1, along the branch E12.
Along the branch E12, x1, · · ·, xn = 0, while xn+1 and xn+2 remain unrestricted. Since x0 6= 0, its elimi-
nation from the D-term constraints (

e:VEVD1e:VEVD1
10.37a) and (

e:VEVD2e:VEVD2
10.37b) produces

P2
j=1 |xn+j |

2
= r2 +

m�2
n

r1, which
is positive in the indicated range of (r1, r2). Therefore, xn+1 = 0 = xn+2 must also be excluded, and we
obtain:

E0 [ E3 , Span(x0)| {z }
I0

� Span(xn+1, xn+2)| {z }
Ib

. (10.68) e:SR4

Since xn+1, xn+2 cannot both vanish, their vevs break U2(1) completely, while x0 6= 0 breaks U1(1) !

Zn since Q1
(x0) = �n; correspondingly, (

e:VEVMe:VEVM
10.37c) reduces to |(�n)�1||x0| = 0. This then is a hybrid

phase in which a Landau-Ginzburg Zn orbifold of {(x1, · · ·, xn) : f(x) = 0} is fibered over the P1
base =�

(xn+1, xn+2)rE3
 
/(

e:Q2e:Q2
10.5).
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Figure 43: The phases of the GLSMs with the superpotentials (
e:LWe:LW
0.8), depicted here for n = 2 f:Ph03

10.3.3 VEVss:VEVs

Throughout the above analysis, the vevs |x0|2, |x1|2,
P

n

i=2 |xi|
2 and

P2
j=1 |xn+j |

2 play distinct roles. As
seen above, |x0| 6= 0 in the “non-geometric” phases III and IV, including the phase boundary (iv) between
them. In turn, x0 = 0 in the “geometric” phases I and II, as well as the phase boundaries (i), (ii) and (iii)
delimiting them.

Eq. (
e:VEVD1e:VEVD1
10.37a) implies that |x1| is nonzero for r1 > 0, which includes phases I and II. Jointly with (

e:VEVD2e:VEVD2
10.37b),

we have:

|x1| =

sP
j
|xn+j |

2 � r2

m
=

vuutr1 �
nX

i=2

|xi|2 > 0,

⇢
r1 >

P
n

i=2 |xi|
2 > 0,

P
n

i=2 |xi|
2
> r2 > �mr1,

(
e:|x1|e:|x1|
10.500)

and x1 parametrizes the exceptional set of the MPCP-desingularization of Pn

(m:···:m:1:1). While r1 > 0, |x1|
vanishes only when r2 = 0, which is the boundary between phases I and II; this suggests that the P1-like
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The “phase diagram” = “secondary fan”
is the toric rep. of the (enlarged/complete) “Kähler structure”

“Tropical geometry” ↔ “large cpx str.”  “large Kähler class”
mirror←−−→

the (semiclassical) space/diagram of GLSM “phases”

becomes modified by “worldsheet instantons” (cumulative effects)
…with shifts and “thickening” of the diagram  → “amoebas” 
(→ “A discriminants,” “Horn uniformization,” … ✅)

“log-geometry” ↔ “smallish cpx str.”  “small Kähler class”
mirror←−−→

quantum corrections → “quantum cohomology”

Mirrors the “complex structure” w/“discriminant locus” ✅
where the ground-state (“target”) space singularizes
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Figure 45: The first five (m=0, · · · , 4) F (n)
m [c1] Kähler structure discriminants for n = 2, 3, 4, defining the “fully

corrected” Kähler phase diagrams; the indicated (✓̂1, ✓̂2) phases are constant for each spike-to-spike segment of
the plot, and are identical for the n = 2, 4 plots, but differ from their n = 3 counterparts f:nm0-4
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Figure 45: The first five (m=0, · · · , 4) F (n)
m [c1] Kähler structure discriminants for n = 2, 3, 4, defining the “fully

corrected” Kähler phase diagrams; the indicated (✓̂1, ✓̂2) phases are constant for each spike-to-spike segment of
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Figure 45: The first five (m=0, · · · , 4) F (n)
m [c1] Kähler structure discriminants for n = 2, 3, 4, defining the “fully

corrected” Kähler phase diagrams; the indicated (✓̂1, ✓̂2) phases are constant for each spike-to-spike segment of
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From the  -charges,  ,  def.  U(1; ℂ)n qa
i ⃗ν i ∈ (N≈ℤn) : ∑i qa

i ⃗ν i =0
  (spanning) fan, up to  lattice automorphisms 
 
 
 
 
 

⃗ν i ∈ Σ GL(n; ℤ)
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i )

where    is the polar of the polytope  spec. by  Δ Δ⋆ ⃗ν i ∈ Σ(1)
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For non-convex, transpolar:     &    (in fact, oft-practiced) Δ :=(Δ⋆)▿ (Δ)▿ =Δ⋆

…introduces flip-folded “multifans” that star-subdivide “multitopes” 😱 😱 😱
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…introduces flip-folded “multifans” that star-subdivide “multitopes” 😱 😱 😱
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
m→k
6 )ε2 (xk1x

→k
2 x

1+km
6 )ε5 (xk1x

→k
2 x

1+km
5 )ε6
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5

(2.8)

Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
x1

2
x6

2+m, x22x52→m and x2
2
x6

2→m, and are circled in the plots in Figure 1.
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Since ε
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j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
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3. The above shows that deforming the fundamental monomial equips the system of anticanonical
monomials with the hierarchical structure of a poset:

!x

x2
2x

1+k
5 x1→k→m

6 x1+k
1 x1→k

2 x2+km
6 x1+k

1 x1→k
2 x2+km

5 x2
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1+k
5 x1→k+m

6

x2
2x6

2→m x2
2x5

2→m x1
2x6

2+m x1
2x5

2+m

ω1

ω5 ω6

ω2

(2.9)

Being reachable by a simple (first) derivative from the fundamental monomial, !x, monomials on each
xi-independent “stripe” are at (deformation) distance of 1 from !x, with the direction of the respective
deformations indicated by the Euclidean lattice normals:

ω6

ω1

ω5

ω2

ω6

ω1

ω5

ω2

Each 2-dimensional cone enclosed between two of these consecutive directions corresponds to a (circled)
corner monomial in Figure 1: ↭(ω1, ω6) ↔ x2

2
x5, ↭(ω2, ω5) ↔ x1

2
x5

3, etc. The so-constructed fan of cones,
”(F (2)

m ), in fact specifies the Hirzebruch scroll F (2)
m as a toric variety [47–49].

The fans (2.1) have a natural dimension-ranked poset structure generated by the inclusion of cones
in the boundary of one-higher dimensional cones, and isomorphic to (2.9): In (2.1), the central 0-cone is
within the boundary of the 1-cone ω1, which is within the boundary of the 2-cone ↭(ω1, ω6). This chain of
relations is strictly (inclusion-reversing) dual to the corresponding statements regarding the monomials in
Figure 1; for example:

(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
Figure 1: all monom’s ↑ x1-indep. monom’s ↑ x1, x6-indep. monom’s

(2.10)

Also of note is the fact that the 2-dimensional cones ↭(ω1, ω2) and ↭(ω5, ω6) do not belong to either of the
two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
generated by ωi [49]. Dually in Figure 1, the two vertical “stripes” (monomials without x1 and without x2,
respectively) never intersect, and the horizontal (x5-omitting) “stripe” intersects the slanted (x6-omitting)
“stripe” either outside the distance-1 convex polygon enclosing the universal monomial, !x, or at a non-
lattice location, ( 2

m ,↓1) for F
(2)
m , where that distance-1 enclosing polygon self-intersects; this defines the

so-called “irrelevant” ideal among the multiplicative ring of monomials [49].

The Transpolar Operation The “stripe”-wise dual operation used above to map the monomial systems in
Figure 1 to the fans (2.1) is a simple version of the transpolar operation (denoted by “ ↫”; see § 3) defined
more formally in Ref. [60–62]. It implements the standard polar operation of algebraic toric geometry [47–
49] for each (convex subset of each) face of a polytope, then reassembles the resulting elements using the
canonical inclusion-reversing nature of any duality. Moreover, the same iterative operation also works
perfectly in reverse: The Euclidean normal to the [ω5, ω1] “stripe” in (2.1) is (1,↓1) and indicates x2

2
x6

for F
(2)

1 and x2
2
/x6 for F

(2)

1 ; the normal to [ω1, ω6] in (2.1, a) is (1, 0) and indicates x2
2
x5 for F

(2)

1 , while
the normal to [ω1, ω6] in (2.1, b) is (1,↓2) and indicates x2

2
/x5 for F

(2)

3 , and so on. The key distinction in
#(F (2)

1 ) between m=0, 1, 2 (convex and flat) and m↬3 (self-intersecting, i.e., flip-folded) cases reflects the
fact that the integral hull (lattice enclosure) of ”(F (2)

m ) is convex for m=0, 1, 2 but non-convex for m↬3.
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)

1 and F
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed
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Figure 2: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 2 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:
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∂1

This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)

1 and F
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed
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m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 2 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:
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∂1 ∂1

This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)

1 and F
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed
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Figure 2: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 2 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.
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∂1 ∂1

This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
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Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
x1

2
x6

2+m, x22x52→m and x2
2
x6

2→m, and are circled in the plots in Figure 1.
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
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Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
x1

2
x6

2+m, x22x52→m and x2
2
x6

2→m, and are circled in the plots in Figure 1.
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z
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f . To this end, compare the c1-degree monomials for F (2)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
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Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
x1

2
x6

2+m, x22x52→m and x2
2
x6

2→m, and are circled in the plots in Figure 1.
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
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, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.
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Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
x1

2
x6

2+m, x22x52→m and x2
2
x6

2→m, and are circled in the plots in Figure 1.

3

3. The above shows that deforming the fundamental monomial equips the system of anticanonical
monomials with the hierarchical structure of a poset:

!x

x2
2x

1+k
5 x1→k→m

6 x1+k
1 x1→k

2 x2+km
6 x1+k

1 x1→k
2 x2+km

5 x2
1x

1+k
5 x1→k+m

6

x2
2x6

2→m x2
2x5

2→m x1
2x6

2+m x1
2x5

2+m

ω1
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(2.9)

Being reachable by a simple (first) derivative from the fundamental monomial, !x, monomials on each
xi-independent “stripe” are at (deformation) distance of 1 from !x, with the direction of the respective
deformations indicated by the Euclidean lattice normals:

ω6

ω1

ω5

ω2

ω6

ω1

ω5

ω2

Each 2-dimensional cone enclosed between two of these consecutive directions corresponds to a (circled)
corner monomial in Figure 1: ↭(ω1, ω6) ↔ x2

2
x5, ↭(ω2, ω5) ↔ x1

2
x5

3, etc. The so-constructed fan of cones,
”(F (2)

m ), in fact specifies the Hirzebruch scroll F (2)
m as a toric variety [47–49].

The fans (2.1) have a natural dimension-ranked poset structure generated by the inclusion of cones
in the boundary of one-higher dimensional cones, and isomorphic to (2.9): In (2.1), the central 0-cone is
within the boundary of the 1-cone ω1, which is within the boundary of the 2-cone ↭(ω1, ω6). This chain of
relations is strictly (inclusion-reversing) dual to the corresponding statements regarding the monomials in
Figure 1; for example:

(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
Figure 1: all monom’s ↑ x1-indep. monom’s ↑ x1, x6-indep. monom’s

(2.10)

Also of note is the fact that the 2-dimensional cones ↭(ω1, ω2) and ↭(ω5, ω6) do not belong to either of the
two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
generated by ωi [49]. Dually in Figure 1, the two vertical “stripes” (monomials without x1 and without x2,
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
m→k
6 )ε2 (xk1x

→k
2 x

1+km
6 )ε5 (xk1x

→k
2 x

1+km
5 )ε6
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(2.8)

Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
x1

2
x6

2+m, x22x52→m and x2
2
x6

2→m, and are circled in the plots in Figure 1.

3

3. The above shows that deforming the fundamental monomial equips the system of anticanonical
monomials with the hierarchical structure of a poset:
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(2.9)

Being reachable by a simple (first) derivative from the fundamental monomial, !x, monomials on each
xi-independent “stripe” are at (deformation) distance of 1 from !x, with the direction of the respective
deformations indicated by the Euclidean lattice normals:

ω6

ω1

ω5

ω2

ω6

ω1

ω5

ω2

Each 2-dimensional cone enclosed between two of these consecutive directions corresponds to a (circled)
corner monomial in Figure 1: ↭(ω1, ω6) ↔ x2

2
x5, ↭(ω2, ω5) ↔ x1

2
x5

3, etc. The so-constructed fan of cones,
”(F (2)

m ), in fact specifies the Hirzebruch scroll F (2)
m as a toric variety [47–49].

The fans (2.1) have a natural dimension-ranked poset structure generated by the inclusion of cones
in the boundary of one-higher dimensional cones, and isomorphic to (2.9): In (2.1), the central 0-cone is
within the boundary of the 1-cone ω1, which is within the boundary of the 2-cone ↭(ω1, ω6). This chain of
relations is strictly (inclusion-reversing) dual to the corresponding statements regarding the monomials in
Figure 1; for example:

(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
Figure 1: all monom’s ↑ x1-indep. monom’s ↑ x1, x6-indep. monom’s

(2.10)

Also of note is the fact that the 2-dimensional cones ↭(ω1, ω2) and ↭(ω5, ω6) do not belong to either of the
two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
generated by ωi [49]. Dually in Figure 1, the two vertical “stripes” (monomials without x1 and without x2,
respectively) never intersect, and the horizontal (x5-omitting) “stripe” intersects the slanted (x6-omitting)
“stripe” either outside the distance-1 convex polygon enclosing the universal monomial, !x, or at a non-
lattice location, ( 2

m ,↓1) for F
(2)
m , where that distance-1 enclosing polygon self-intersects; this defines the

so-called “irrelevant” ideal among the multiplicative ring of monomials [49].

The Transpolar Operation The “stripe”-wise dual operation used above to map the monomial systems in
Figure 1 to the fans (2.1) is a simple version of the transpolar operation (denoted by “ ↫”; see § 3) defined
more formally in Ref. [60–62]. It implements the standard polar operation of algebraic toric geometry [47–
49] for each (convex subset of each) face of a polytope, then reassembles the resulting elements using the
canonical inclusion-reversing nature of any duality. Moreover, the same iterative operation also works
perfectly in reverse: The Euclidean normal to the [ω5, ω1] “stripe” in (2.1) is (1,↓1) and indicates x2
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1 , while
the normal to [ω1, ω6] in (2.1, b) is (1,↓2) and indicates x2
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3 , and so on. The key distinction in
#(F (2)

1 ) between m=0, 1, 2 (convex and flat) and m↬3 (self-intersecting, i.e., flip-folded) cases reflects the
fact that the integral hull (lattice enclosure) of ”(F (2)

m ) is convex for m=0, 1, 2 but non-convex for m↬3.
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(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
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two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
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more formally in Ref. [60–62]. It implements the standard polar operation of algebraic toric geometry [47–
49] for each (convex subset of each) face of a polytope, then reassembles the resulting elements using the
canonical inclusion-reversing nature of any duality. Moreover, the same iterative operation also works
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
m→k
6 )ε2 (xk1x

→k
2 x

1+km
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(2.8)

Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
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2→m, and are circled in the plots in Figure 1.
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3. The above shows that deforming the fundamental monomial equips the system of anticanonical
monomials with the hierarchical structure of a poset:
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Being reachable by a simple (first) derivative from the fundamental monomial, !x, monomials on each
xi-independent “stripe” are at (deformation) distance of 1 from !x, with the direction of the respective
deformations indicated by the Euclidean lattice normals:
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Each 2-dimensional cone enclosed between two of these consecutive directions corresponds to a (circled)
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3, etc. The so-constructed fan of cones,
”(F (2)

m ), in fact specifies the Hirzebruch scroll F (2)
m as a toric variety [47–49].

The fans (2.1) have a natural dimension-ranked poset structure generated by the inclusion of cones
in the boundary of one-higher dimensional cones, and isomorphic to (2.9): In (2.1), the central 0-cone is
within the boundary of the 1-cone ω1, which is within the boundary of the 2-cone ↭(ω1, ω6). This chain of
relations is strictly (inclusion-reversing) dual to the corresponding statements regarding the monomials in
Figure 1; for example:

(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
Figure 1: all monom’s ↑ x1-indep. monom’s ↑ x1, x6-indep. monom’s

(2.10)

Also of note is the fact that the 2-dimensional cones ↭(ω1, ω2) and ↭(ω5, ω6) do not belong to either of the
two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
generated by ωi [49]. Dually in Figure 1, the two vertical “stripes” (monomials without x1 and without x2,
respectively) never intersect, and the horizontal (x5-omitting) “stripe” intersects the slanted (x6-omitting)
“stripe” either outside the distance-1 convex polygon enclosing the universal monomial, !x, or at a non-
lattice location, ( 2

m ,↓1) for F
(2)
m , where that distance-1 enclosing polygon self-intersects; this defines the

so-called “irrelevant” ideal among the multiplicative ring of monomials [49].

The Transpolar Operation The “stripe”-wise dual operation used above to map the monomial systems in
Figure 1 to the fans (2.1) is a simple version of the transpolar operation (denoted by “ ↫”; see § 3) defined
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
m→k
6 )ε2 (xk1x

→k
2 x

1+km
6 )ε5 (xk1x

→k
2 x

1+km
5 )ε6

stripe: x
2
2x

1+k
5 x

1→k→m
6 x

2
1x

1+k
5 x

1→k+m
6 x

1+k
1 x

1→k
2 x

2+km
6 x

1+k
1 x

1→k
2 x

2+km
5

(2.8)

Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
x1

2
x6

2+m, x22x52→m and x2
2
x6

2→m, and are circled in the plots in Figure 1.
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3. The above shows that deforming the fundamental monomial equips the system of anticanonical
monomials with the hierarchical structure of a poset:
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Being reachable by a simple (first) derivative from the fundamental monomial, !x, monomials on each
xi-independent “stripe” are at (deformation) distance of 1 from !x, with the direction of the respective
deformations indicated by the Euclidean lattice normals:

ω6

ω1

ω5

ω2

ω6

ω1

ω5

ω2

Each 2-dimensional cone enclosed between two of these consecutive directions corresponds to a (circled)
corner monomial in Figure 1: ↭(ω1, ω6) ↔ x2

2
x5, ↭(ω2, ω5) ↔ x1

2
x5

3, etc. The so-constructed fan of cones,
”(F (2)

m ), in fact specifies the Hirzebruch scroll F (2)
m as a toric variety [47–49].

The fans (2.1) have a natural dimension-ranked poset structure generated by the inclusion of cones
in the boundary of one-higher dimensional cones, and isomorphic to (2.9): In (2.1), the central 0-cone is
within the boundary of the 1-cone ω1, which is within the boundary of the 2-cone ↭(ω1, ω6). This chain of
relations is strictly (inclusion-reversing) dual to the corresponding statements regarding the monomials in
Figure 1; for example:

(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
Figure 1: all monom’s ↑ x1-indep. monom’s ↑ x1, x6-indep. monom’s

(2.10)

Also of note is the fact that the 2-dimensional cones ↭(ω1, ω2) and ↭(ω5, ω6) do not belong to either of the
two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
generated by ωi [49]. Dually in Figure 1, the two vertical “stripes” (monomials without x1 and without x2,
respectively) never intersect, and the horizontal (x5-omitting) “stripe” intersects the slanted (x6-omitting)
“stripe” either outside the distance-1 convex polygon enclosing the universal monomial, !x, or at a non-
lattice location, ( 2

m ,↓1) for F
(2)
m , where that distance-1 enclosing polygon self-intersects; this defines the

so-called “irrelevant” ideal among the multiplicative ring of monomials [49].

The Transpolar Operation The “stripe”-wise dual operation used above to map the monomial systems in
Figure 1 to the fans (2.1) is a simple version of the transpolar operation (denoted by “ ↫”; see § 3) defined
more formally in Ref. [60–62]. It implements the standard polar operation of algebraic toric geometry [47–
49] for each (convex subset of each) face of a polytope, then reassembles the resulting elements using the
canonical inclusion-reversing nature of any duality. Moreover, the same iterative operation also works
perfectly in reverse: The Euclidean normal to the [ω5, ω1] “stripe” in (2.1) is (1,↓1) and indicates x2
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1 , while
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3 , and so on. The key distinction in
#(F (2)

1 ) between m=0, 1, 2 (convex and flat) and m↬3 (self-intersecting, i.e., flip-folded) cases reflects the
fact that the integral hull (lattice enclosure) of ”(F (2)

m ) is convex for m=0, 1, 2 but non-convex for m↬3.
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z
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f . To this end, compare the c1-degree monomials for F (2)

1 and F
(2)

3 ,

ω(F (2)

1 )

x1
2x5

3

x1
2x5

2x6

x1
2x5x6

2

x1
2x6

3

x1x2x5
2

x1x2x5x6

x1x2x6
2

x2
2x5

x2
2x6

x1
3x5

4

x2

x1
3x5

3x6
x2

x1
3x5

2x6
2

x2

x1
3x5 x6

3

x2

x1
3x6

4

x2

x1
3x6

5

x2x5

x1
2x6

4

x5

x1 x2 x6
3

x5

x2
2x6

2

x5

x2
3x6

x1 x5

x2
3

x1

x2
3x5

x1x6

x2
3x5

2

x1x6
2

x2
2x5

2

x6

x2
2x5

3

x6
2

x1 x2 x5
3

x6

x1 x2 x5
4

x6
2

x1
2 x5

4

x6
ω(F (2)

3 )

x1
2x5

5

x1
2x5

4x6

x1
2x5

3x6
2

x1
2x5

2x6
3

x1
2x5x6

4

x1
2x6

5

x1x2x5
2

x1x2x5x6

x1x2x6
2 x2

2/x6

x2
2/x5

x1
3x5

6x6
2

x2

x1
3x5

5x6
3

x2

x1
3x5

4x6
4

x2

x1
3x5

3x6
5

x2

x1
3x5

2x6
6

x2

x1
3x5 x6

7

x2

x1
3x6

8

x2

x1
3x6

9

x2x5

x1
2x6

6

x5

x1 x2 x6
3

x5

x1 x2 x6
4

x5
2

x2
2x6

x5
2

x2
3

x1 x5
2x6

2

x2
3

x1 x5 x6
3

x2
3

x1 x6
4

x2
3x5

x1x6
5

x2
2x5

x6
2

x2
2x5

2

x6
3

x2
2x5

3

x6
4

x1 x2 x5
3

x6

x1 x2 x5
4

x6
2

x1 x2 x5
5

x6
3

x1 x2 x5
6

x6
4

x1
2x5

6

x6

Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
m→k
6 )ε2 (xk1x

→k
2 x

1+km
6 )ε5 (xk1x

→k
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1+km
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(2.8)

Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
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2+m, x22x52→m and x2
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2→m, and are circled in the plots in Figure 1.
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Being reachable by a simple (first) derivative from the fundamental monomial, !x, monomials on each
xi-independent “stripe” are at (deformation) distance of 1 from !x, with the direction of the respective
deformations indicated by the Euclidean lattice normals:
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Each 2-dimensional cone enclosed between two of these consecutive directions corresponds to a (circled)
corner monomial in Figure 1: ↭(ω1, ω6) ↔ x2
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x5, ↭(ω2, ω5) ↔ x1
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x5

3, etc. The so-constructed fan of cones,
”(F (2)

m ), in fact specifies the Hirzebruch scroll F (2)
m as a toric variety [47–49].

The fans (2.1) have a natural dimension-ranked poset structure generated by the inclusion of cones
in the boundary of one-higher dimensional cones, and isomorphic to (2.9): In (2.1), the central 0-cone is
within the boundary of the 1-cone ω1, which is within the boundary of the 2-cone ↭(ω1, ω6). This chain of
relations is strictly (inclusion-reversing) dual to the corresponding statements regarding the monomials in
Figure 1; for example:

(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
Figure 1: all monom’s ↑ x1-indep. monom’s ↑ x1, x6-indep. monom’s

(2.10)

Also of note is the fact that the 2-dimensional cones ↭(ω1, ω2) and ↭(ω5, ω6) do not belong to either of the
two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
generated by ωi [49]. Dually in Figure 1, the two vertical “stripes” (monomials without x1 and without x2,
respectively) never intersect, and the horizontal (x5-omitting) “stripe” intersects the slanted (x6-omitting)
“stripe” either outside the distance-1 convex polygon enclosing the universal monomial, !x, or at a non-
lattice location, ( 2

m ,↓1) for F
(2)
m , where that distance-1 enclosing polygon self-intersects; this defines the

so-called “irrelevant” ideal among the multiplicative ring of monomials [49].

The Transpolar Operation The “stripe”-wise dual operation used above to map the monomial systems in
Figure 1 to the fans (2.1) is a simple version of the transpolar operation (denoted by “ ↫”; see § 3) defined
more formally in Ref. [60–62]. It implements the standard polar operation of algebraic toric geometry [47–
49] for each (convex subset of each) face of a polytope, then reassembles the resulting elements using the
canonical inclusion-reversing nature of any duality. Moreover, the same iterative operation also works
perfectly in reverse: The Euclidean normal to the [ω5, ω1] “stripe” in (2.1) is (1,↓1) and indicates x2

2
x6

for F
(2)

1 and x2
2
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1 , while
the normal to [ω1, ω6] in (2.1, b) is (1,↓2) and indicates x2

2
/x5 for F
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3 , and so on. The key distinction in
#(F (2)

1 ) between m=0, 1, 2 (convex and flat) and m↬3 (self-intersecting, i.e., flip-folded) cases reflects the
fact that the integral hull (lattice enclosure) of ”(F (2)

m ) is convex for m=0, 1, 2 but non-convex for m↬3.
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This at once shows that for m↭3, the monomials (2.6) are either all proportional to x1 or involve negative
powers of x5, x6. Standard practice in both quantum field theory and algebraic geometry is to omit rational
monomials, which crucially hobbles the intended deformations: Restricting to k=1, · · · 4, insures that all
regular polynomial choices,

f(x) = x1 ·
(
C := x

k
1 (x2→x3→x4)

3→k(x5→x6)
2+km

, k=0, · · · , 3
)
, (2.7)

necessarily factorize so that the zero-locus reduces: Zf ={x1=0} ↑ {C=0}, and the singular locus,
Z

ω
f ={x1=0} ↓ {C=0} is a Calabi–Yau 2-fold. The 3-fold Zf is Tyurin degenerate [61] and deemed “un-

smoothable” as there are no regular monomials to render (2.7) transverse.

In turn, setting k=0 in (2.6) identifies monomials that are x1-independent and so can smooth (2.7)
by deforming it away from {x1=0} ↔ Z

ω
f . To this end, compare the c1-degree monomials for F (2)
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Figure 1: Some of the c1(F (2)
m )-degree monomials plotted to indicate the “strips” discussed in the text; the

fundamental monomial, x1x2x5x6 is boxed

shown in Figure 1 for the 2-dimensional surfaces (adjusting to deg[c1(F
(2)
m )]=

( 2
2→m

)
and omitting x3, x4)

for simplicity. The plots make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe” (hyperplane in
higher dimensions). Therefore, each “stripe” is a suitable multiple of a single xj-derivative, (εj!x):

k ↗ Z x1-indep. x2-indep. x5-indep. x6-indep.

gen.: (x2x5kx6→k→m)ε1 (x1xk5x
m→k
6 )ε2 (xk1x

→k
2 x

1+km
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1+km
5 )ε6
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(2.8)

Since ε
2
j!x=0, each “stripe” acts as a boundary — for that εj-deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of two variables; this
hierarchy extends straightforwardly in higher dimensions. The tabulation (2.8) makes it clear that:
(1) There is no x1- and x2-independent monomial. (2) There is an x5- and x6-independent mono-
mial only for m=1, 2, x22/x1 and x2

2, respectively. (3) The “cornerstone” monomials are x1
2
x5

2+m,
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2
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2→m, and are circled in the plots in Figure 1.
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3. The above shows that deforming the fundamental monomial equips the system of anticanonical
monomials with the hierarchical structure of a poset:
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Being reachable by a simple (first) derivative from the fundamental monomial, !x, monomials on each
xi-independent “stripe” are at (deformation) distance of 1 from !x, with the direction of the respective
deformations indicated by the Euclidean lattice normals:
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Each 2-dimensional cone enclosed between two of these consecutive directions corresponds to a (circled)
corner monomial in Figure 1: ↭(ω1, ω6) ↔ x2
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x5, ↭(ω2, ω5) ↔ x1

2
x5

3, etc. The so-constructed fan of cones,
”(F (2)

m ), in fact specifies the Hirzebruch scroll F (2)
m as a toric variety [47–49].

The fans (2.1) have a natural dimension-ranked poset structure generated by the inclusion of cones
in the boundary of one-higher dimensional cones, and isomorphic to (2.9): In (2.1), the central 0-cone is
within the boundary of the 1-cone ω1, which is within the boundary of the 2-cone ↭(ω1, ω6). This chain of
relations is strictly (inclusion-reversing) dual to the corresponding statements regarding the monomials in
Figure 1; for example:

(2.1): 0 (center) → boundary of ↭(ω1) → boundary of ↭(ω1, ω6)
Figure 1: all monom’s ↑ x1-indep. monom’s ↑ x1, x6-indep. monom’s

(2.10)

Also of note is the fact that the 2-dimensional cones ↭(ω1, ω2) and ↭(ω5, ω6) do not belong to either of the
two (posets) fans (2.1); this defines the so-called Stanley-Reisner ideal among the linear vector (sub)spaces
generated by ωi [49]. Dually in Figure 1, the two vertical “stripes” (monomials without x1 and without x2,
respectively) never intersect, and the horizontal (x5-omitting) “stripe” intersects the slanted (x6-omitting)
“stripe” either outside the distance-1 convex polygon enclosing the universal monomial, !x, or at a non-
lattice location, ( 2

m ,↓1) for F
(2)
m , where that distance-1 enclosing polygon self-intersects; this defines the

so-called “irrelevant” ideal among the multiplicative ring of monomials [49].

The Transpolar Operation The “stripe”-wise dual operation used above to map the monomial systems in
Figure 1 to the fans (2.1) is a simple version of the transpolar operation (denoted by “ ↫”; see § 3) defined
more formally in Ref. [60–62]. It implements the standard polar operation of algebraic toric geometry [47–
49] for each (convex subset of each) face of a polytope, then reassembles the resulting elements using the
canonical inclusion-reversing nature of any duality. Moreover, the same iterative operation also works
perfectly in reverse: The Euclidean normal to the [ω5, ω1] “stripe” in (2.1) is (1,↓1) and indicates x2
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3 , and so on. The key distinction in
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1 ) between m=0, 1, 2 (convex and flat) and m↬3 (self-intersecting, i.e., flip-folded) cases reflects the
fact that the integral hull (lattice enclosure) of ”(F (2)

m ) is convex for m=0, 1, 2 but non-convex for m↬3.
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rBH-gB [1] P. Berglund and T. Hübsch, “A generalized construction of Calabi-Yau models and mirror symmetry,”
SciPost 4 no. 2, (2018) 009 (1–30), arXiv:1611.10300 [hep-th].

rO-TV [2] T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties. A Series
of Modern Surveys in Mathematics. Springer, 1988.

rF-TV [3] W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies. Princeton University Press,
1993.

rGE-CCAG [4] G. Ewald, Combinatorial Convexity and Algebraic Geometry. Springer Verlag, 1996.

rCLS-TV [5] D. A. Cox, J. B. Little, and H. K. Schenck, Toric Varieties. Graduate Studies in Mathematics. American
Mathematical Society, 2011.

rP+RV-12 [6] B. Poonen and F. Rodriguez-Villegas, “Lattice polygons and the number 12,” Am. Math. Monthly 107
no. 3, (March, 2000) 238–250.

rD-TV [7] V. I. Danilov, “The geometry of toric varieties,” Russian Math. Surveys 33 no. 2, (1978) 97–154.
http://stacks.iop.org/0036-0279/33/i=2/a=R03.

1

⌫1

⌫2

⌫3

⌫4

⌫O41

⌫O12 ⌫O23

⌫O34

2�m

1 2

1

1

�1

1

1

References
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rBH-gB [1] P. Berglund and T. Hübsch, “A generalized construction of Calabi-Yau models and mirror symmetry,”
SciPost 4 no. 2, (2018) 009 (1–30), arXiv:1611.10300 [hep-th].

rO-TV [2] T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties. A Series
of Modern Surveys in Mathematics. Springer, 1988.

rF-TV [3] W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies. Princeton University Press,
1993.

rGE-CCAG [4] G. Ewald, Combinatorial Convexity and Algebraic Geometry. Springer Verlag, 1996.

rCLS-TV [5] D. A. Cox, J. B. Little, and H. K. Schenck, Toric Varieties. Graduate Studies in Mathematics. American
Mathematical Society, 2011.

rP+RV-12 [6] B. Poonen and F. Rodriguez-Villegas, “Lattice polygons and the number 12,” Am. Math. Monthly 107
no. 3, (March, 2000) 238–250.

rD-TV [7] V. I. Danilov, “The geometry of toric varieties,” Russian Math. Surveys 33 no. 2, (1978) 97–154.
http://stacks.iop.org/0036-0279/33/i=2/a=R03.

1

         
(non-Fano toric variety)

F(2)
3

(F(2)
3 )▿ =?

GLSM
xn+j+1 :=yj“Plan B”→ Toric Geometry

| fa(ϕ) |2 = 0 & |pa |2 ∑i
∂fa
∂ϕi

2
= 0 F (n)

m : [
p x1 x2 ⋯ xn y0 y1

−n 1 1 ⋯ 1 0 0
m−2 −m 0 ⋯ 0 1 1]

flip-folded

non-convex

—to be continued…
(for now, see arXiv:2502.08002 )

https://arxiv.org/abs/2502.08002
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