Beyond Algebraic Solutions to Stringy Spacetime

Happy birthday, Branko!

(who's counting?)

@ Nonlinearity, Nonlocality & Ultrametricity, Beograd, May 2025

Tristan Hübsch

Departments of Physics & Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia Department of Mathematics, University of Maryland, College Park, MD

https://tristan.nfshost.com/

- Roadmap
- © QFT σ Models
- Worldsheet SuSy
- © GLSM → Toric Geometry
- GLSM → Toric Geometry + "Plan B"

The truth, nothing but the unvarnished truth, ...but by all means — <u>not all of it!</u>

Many thanks to Per Berglund and Mikiya Masuda

<u>arXiv:2501.11684</u>, <u>arXiv:2502.08002</u> & refs therein

Roadmap Superfields: Hamilton's Action: Where in the World chiral. • "D-terms" twisted-chiral "F-terms" vector Mixed terms is GLSM? QFT σ-Model Domain Space Target Space Superspace & Calculus Complex Abelian Mapping $[U(1;\mathbb{C}) \approx \mathbb{C}^*]^n$ Hamilton's Action Partition Functional equivalence classes Spin(1,1|2,2) Observables Dualities **Tropical Geometry Gauge Symmetry** Toric C* action **Worldsheet SuSy** QFT σ-Model **log-Toric Geometry** H*(T); B-model; D(coh) **Holomorphic Data** • "Large cpx str." **Toric Geometry GLSM Constrained** Entire M-space **NLSM** 65 **Mirror Duality** $\text{CICY} \subset \Pi \ \mathbb{P}^n$ Construction Construction **Symplectic Data** • (Semi)Classical Quantum • Fan Superpotential $T^*(X) \rightarrow Singular Comp.$ Dual fan & charts Phases: Spanning polytope Instanton Corr. - "Geometric" H*(T*); A-model; D(FS) Transpolar - "Toric" **GW Invaiants** Newton polytope - "LGO" K* sections - "Hybrid" **Complete Mechanics** Transposition partial match: Exceptional (SR) sets, GIT Quotient, Reparametrization

QFT σ Models A Bird's-Eye View

in cl.mech.: $\mathbb{R}^1_{ au}$

Obomain space: Riemann surface, Σ_g , locally $\sim \mathbb{R}^{1,1}_{\tau,\sigma}$ w/BC's

QFT σ-Model Domain Space Target Space

- MappingHamilton's Action Partition Functional
- Observables
- Dualities

OFT σ Models

- A Bird's-Eye View
- © Domain space: Riemann surface, Σ_g , locally $\sim \mathbb{R}^{1,1}_{\tau,\sigma}$ w/BC's
- Target space: Lorentzian space(time), such as $\mathbb{R}^{1,9}$
- Mapping: "coordinate fields," $X^{\mu}(\xi) : \Sigma_g \to \mathbb{R}^{1,9}$
- Hamilton's action: $S := \int_{\Sigma_g} L[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(X), \ldots]$

QFT σ-Model

Domain Space
Target Space
Mapping
Hamilton's Action
Partition Functional
Observables
Dualities

OFT σ Models A Bird's-Eye View

- Domain space: Riemann surface, Σ_g , locally $\sim \mathbb{R}_{\tau,\sigma}^{1,1}$ w/BC's
- Target space: Lorentzian space(time), such as $\mathbb{R}^{1,9}$
- Mapping: "coordinate fields," $X^{\mu}(\xi) : \Sigma_g \to \mathbb{R}^{1,9}$
- Hamilton's action: $S := \int_{\Sigma_g} L[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(X), \ldots]$
- Classical physics: $\delta S[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(x), ...] = 0$
 - ← Euler-Lagrange EoM

QFT σ-Model

Domain Space
Target Space
Mapping
Hamilton's Action
Partition Functional
Observables
Dualities

QFT σ-Model

QFT σ Models

A Bird's-Eye View

- © Domain space: Riemann surface, Σ_g , locally $\sim \mathbb{R}^{1,1}_{\tau,\sigma}$ w/BC's
- Target space: Lorentzian space(time), such as $\mathbb{R}^{1,9}$
- Mapping: "coordinate fields," $X^{\mu}(\xi) : \Sigma_g \to \mathbb{R}^{1,9}$
- Hamilton's action: $S := \int_{\Sigma_g} L[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(X), \ldots]$
- Classical physics: $\delta S[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(x), ...] = 0$
 - ← Euler-Lagrange EoM
- Quantum ($\delta S \neq 0$) fluctuations "deform" $\{\gamma_{ij}(\xi), G_{\mu\nu}(x), ...\}$

QFT σ-Model

• Domain Space

• Target Space

• Mapping

• Hamilton's Action

• Partition Functional

• Observables

• Dualities

QFT σ Models

A Bird's-Eye View

- © Domain space: Riemann surface, Σ_g , locally $\sim \mathbb{R}_{\tau,\sigma}^{1,1}$ w/BC's
- Target space: Lorentzian space(time), such as $\mathbb{R}^{1,9}$
- Mapping: "coordinate fields," $X^{\mu}(\xi) : \Sigma_g \to \mathbb{R}^{1,9}$
- Hamilton's action: $S := \int_{\Sigma_g} L[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(X), \dots]$
- Classical physics: $\delta S[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(x), ...] = 0$
 - ← Euler-Lagrange EoM
- Quantum ($\delta S \neq 0$) fluctuations "deform" $\{\gamma_{ij}(\xi), G_{\mu\nu}(x), ...\}$
- except for data at "initial" and "final" points

QFT σ-Model

Domain Space
Target Space
Mapping
Hamilton's Action
Partition Functional
Observables
Dualities

QFT σ-Model

QFT σ Models

A Bird's-Eye View

- © Domain space: Riemann surface, Σ_g , locally $\sim \mathbb{R}_{\tau,\sigma}^{1,1}$ w/BC's
- Target space: Lorentzian space(time), such as $\mathbb{R}^{1,9}$
- Mapping: "coordinate fields," $X^{\mu}(\xi) : \Sigma_g \to \mathbb{R}^{1,9}$
- Hamilton's action: $S := \int_{\Sigma_g} L[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(X), \ldots]$
- Classical physics: $\delta S[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(x), ...] = 0$
 - ← Euler-Lagrange EoM
- Quantum ($\delta S \neq 0$) fluctuations "deform" $\{\gamma_{ij}(\xi), G_{\mu\nu}(x), \ldots\}$
- Note: Σ_g is not actually *observable* must "sum" over all (Σ_g, γ_{ij})
- Sexcept for data at "initial" and "final" points $o \sum_{g=0}^{\infty} \int_{\mathcal{M}_{g;\{\xi\}_i,\{\xi\}_f}} [\cdots]$
- Whence Feynman's "path integral"

$$Z[G_{\mu\nu},\ldots] := \iint \mathbf{D}[X] e^{-iS[X^{\mu};\gamma_{ij},G_{\mu\nu},\ldots]/\hbar} X^{\mu}(\xi) : \Sigma_{g,\gamma} \to \mathcal{X}$$

OFT σ Models

A Bird's-Eye View

- Obomain space: Riemann surface, Σ_g , locally $\sim \mathbb{R}^{1,1}_{ au,\sigma}$ w/BC's
- Target space: Lorentzian space(time), such as 🚇
- Mapping: "coordinate fields," $X^{\mu}(\xi): \Sigma_g \to \mathbb{R}^{1/3}$
- Hamilton's action: $S := \int_{\Sigma_g} L[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(X), \ldots] \blacktriangleleft$
- Classical physics: $\delta S[X^{\mu}; \gamma_{ij}(\xi), G_{\mu\nu}(x), ...] = 0$
 - ← Euler-Lagrange EoM

"Dynamically"
Determined
Target space

QFT σ-Model

- Quantum ($\delta S \neq 0$) fluctuations "deform" $\{\gamma_{ij}(\xi), G_{\mu\nu}(x), \ldots\}$
- Note: Σ_g is not actually *observable* must "sum" over all (Σ_g, γ_{ij})
- Θ except for data at "initial" and "final" points $\to \sum_{g=0}^{\infty} \int_{\mathcal{M}_{g;\{\xi\}_i,\{\xi\}_f}} [\cdots]$
- Whence Feynman's "path integral"

$$Z[G_{\mu\nu},\ldots] := \iint \mathbf{D}[X] e^{-iS[X^{\mu};\gamma_{ij},G_{\mu\nu},\ldots]/\hbar} X^{\mu}(\xi) : \Sigma_{g,\gamma} \to \mathcal{X}$$

Better strategy: specify S[X; ...] by symmetries & "analytic" properties

 $\mathbf{\mathcal{T}} \mathbf{\mathcal{T}} \mathbf{\mathcal$

A Bird's-Eye View

- -lamilton's Action Partition Functional
- Observables
- Dualities

$$\text{ If } Z[G_{\mu\nu},\ldots] = e^{-iS_{\text{eff}}[\bar{x}^{\mu};\bar{\gamma}_{ij}(\xi),\,\widetilde{G}_{\mu\nu}(x),\ldots]/\hbar}, \text{ "renormalized" } G \to \widetilde{G}$$

- [™]Renormalization" is computed iteratively → iterations="flow"
- \bigcirc "Renormalization group flow" has fixed points \rightarrow "quantum stability"

 $\mathbf{\sigma} \quad \mathbf{Models}^{Z[G_{\mu\nu}, \ldots]} := \iint_{X^{\mu}(\xi): \ \Sigma_{g,\gamma} \to \mathcal{X}} \mathbf{D}[X] \, e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \ldots]/\hbar}$

A Bird's-Eye View

$$\text{ If } Z[G_{\mu\nu},\ldots] = e^{-iS_{\text{eff}}[\bar{x}^{\mu};\bar{\gamma}_{ij}(\xi),\,\widetilde{G}_{\mu\nu}(x),\ldots]/\hbar}, \text{ "renormalized" } G \to \widetilde{G}$$

- \bigcirc "Renormalization group flow" has fixed points \rightarrow "quantum stability"
- \odot 1979, D. Friedan: 1st order quantum stability ightarrow Einstein Eq.'s for $G_{\mu
 u}$ 46 years ago!
 - Subsequently generalized, reproduces all gauge interactions in the target-space field theory

 $\mathbf{F} \mathbf{O} \mathbf{Models}^{Z[G_{\mu\nu}, \ldots]} := \iint_{X^{\mu}(\xi): \ \Sigma_{g,\gamma} \to \mathcal{X}} \mathbf{D}[X] \, e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \ldots]/\hbar}$

- Dualities

- If $Z[G_{\mu\nu},...]=e^{-iS_{\text{eff}}[\bar{x}^{\mu};\bar{\gamma}_{ij}(\xi),\,\widetilde{G}_{\mu\nu}(x),...]/\hbar}$, "renormalized" $G\to\widetilde{G}$
 - [™]Renormalization" is computed iteratively → iterations="flow"
 - \bigcirc "Renormalization group flow" has fixed points \rightarrow "quantum stability"
 - \odot 1979, D. Friedan: 1st order quantum stability ightarrow Einstein Eq.'s for $G_{\mu
 u}$ 46 years ago!
 - Subsequently generalized, reproduces all gauge interactions extending Ehrenfest's Theorem in the target-space field theory

 $\mathbf{\sigma} \quad \mathbf{Models}^{Z[G_{\mu\nu}, \ldots]} := \iint_{X^{\mu}(\xi): \ \Sigma_{g,\gamma} \to \mathcal{X}} \mathbf{D}[X] e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \ldots]/\hbar}$

QFT σ-Model

A Bird's-Eye View

If $Z[G_{\mu\nu},...]=e^{-iS_{\text{eff}}[\bar{x}^{\mu};\bar{\gamma}_{ij}(\xi),\,\widetilde{G}_{\mu\nu}(x),...]/\hbar}$, "renormalized" $G\to\widetilde{G}$

- [™]Renormalization" is computed iteratively → iterations="flow"
- \bigcirc "Renormalization group flow" has fixed points \rightarrow "quantum stability"
- extstyle ext46 years ago!
 - Subsequently generalized, reproduces all gauge interactions in the target-space field theory

extending Ehrenfest's Theorem

- $\text{ ``vev"s: } x^{\mu} := \langle X^{\mu} \rangle := \iint \mathbf{D}[X] X^{\mu}(\tau, \sigma) e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar} = \text{target-space coord's }$

 $\mathbf{O} \quad \mathbf{Models}^{Z[G_{\mu\nu}, \ldots]} := \iint_{X^{\mu}(\xi): \ \Sigma_{g,\gamma} \to \mathcal{X}} \mathbf{D}[X] \, e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \ldots]/\hbar}$

QFT σ-Model

A Bird's-Eye View

- If $Z[G_{\mu\nu},...]=e^{-iS_{\text{eff}}[\bar{x}^{\mu};\bar{\gamma}_{ij}(\xi),\widetilde{G}_{\mu\nu}(x),...]/\hbar}$, "renormalized" $G\to\widetilde{G}$
 - [™]Renormalization" is computed iteratively → iterations="flow"
 - \bigcirc "Renormalization group flow" has fixed points \rightarrow "quantum stability"
 - extstyle ext46 years ago!
 - Subsequently generalized, reproduces all gauge interactions extending Ehrenfest's Theorem in the target-space field theory

 - $\text{ ``vev"s: } x^{\mu} := \langle X^{\mu} \rangle := \iint \mathbf{D}[X] X^{\mu}(\tau, \sigma) e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar} = \text{target-space coord's }$
 - Note: $x^{\mu} := x_{I}^{\mu} + x_{R}^{\mu}$ and $\tilde{x}^{\mu} := x_{I}^{\mu} x_{R}^{\mu}$ provides for a <u>chiral doubling</u>...
 - \bigcirc & manifestly T-dual (\rightarrow mirror-symmetric) formulation of string theory...

 $\mathbf{O} \quad \mathbf{Models}^{Z[G_{\mu\nu}, \ldots]} := \iint_{X^{\mu}(\xi): \ \Sigma_{g,\gamma} \to \mathcal{X}} \mathbf{D}[X] e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \ldots]/\hbar}$

QFT σ-Model

A Bird's-Eye View

- $\P[S] = e^{-iS_{\text{eff}}[\bar{x}^{\mu}; \bar{\gamma}_{ij}(\xi), \widetilde{G}_{\mu\nu}(x), \dots]/\hbar}$, "renormalized" $G \to \widetilde{G}$
 - [™]Renormalization" is computed iteratively → iterations="flow"
 - \bigcirc "Renormalization group flow" has fixed points \rightarrow "quantum stability"
 - extstyle ext46 years ago!
 - Subsequently generalized, reproduces all gauge interactions extending Ehrenfest's Theorem in the target-space field theory

 - \square "vev"s: $x^{\mu} := \langle X^{\mu} \rangle := \iint \mathbf{D}[X] X^{\mu}(\tau, \sigma) e^{-iS[X^{\mu}; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar} = \text{target-space coord's}$
 - Note: $x^{\mu} := x_{I}^{\mu} + x_{R}^{\mu}$ and $\tilde{x}^{\mu} := x_{I}^{\mu} x_{R}^{\mu}$ provides for a <u>chiral</u> <u>doubling</u>...
 - \bigcirc & manifestly T-dual (\rightarrow mirror-symmetric) formulation of string theory...
 - \bigcirc String theory = layer-cake of QFTs: Worldsheet \rightarrow Target space \rightarrow Moduli space

$\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{X}^{\mu(\xi): \Sigma_{g,\gamma} \to \mathcal{X}}$

artition Functional

Observables

QFT σ-Model

The Magic of String Theory

String theory = layer-cake of QFTs: Worldsheet \rightarrow Target space \rightarrow Moduli space

classical Equations of Motion = quantum stability

 $\{(\Sigma_g, \gamma_{ij}); \mathcal{X}^{Md-1)}; S[X^{\mu}; \gamma_{ij}; G_{\mu\nu}]\}$

superconformal worldsheet QFT

 $\{(\mathcal{F},\mathcal{G}_{AB}); \ldots\}$ moduli-space QFT classical Equations of Motion = quantum stability $\{(\mathcal{X}^{1,d},G_{\mu\nu}); \; \mathcal{F}; \; S[\Psi,A_{\mu},H; \; G_{\mu\nu}; \; \mathcal{G}_{AB}]\}$ (broken supersymmetric) target-spacetime QFT

$\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{X}^{\mu}(\xi) : \Sigma_{g,\gamma} \to \mathcal{X}$

)bservables

- QFT σ-Model

The Magic of String Theory

- String theory = layer-cake of QFTs: Worldsheet \rightarrow Target space \rightarrow Moduli space
- Layer-wise
 - symmetries & anomaly cancellations
 - (seem to) restrict the space of models to finite-volume spaces
 - UV/IR mixing & pheno predictions $[\rightarrow arXiv:2407.06207]$

$$\{(\mathcal{X}^{1,d},G_{\mu\nu}); \mathcal{F}; S[\Psi,A_{\mu},H; G_{\mu\nu}; \mathcal{G}_{AB}]\}$$
 (broken supersymmetric) target-spacetime QFT

classical Equations of Motion = quantum stability

$$\left\{ (\Sigma_g, \gamma_{ij}); \; \mathcal{X}^{(d-1)}; \; S[X^{\mu}; \; \gamma_{ij}; \; G_{\mu\nu}] \right\}$$
 superconformal worldsheet QFT

$\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{X}^{\mu}(\xi) : \Sigma_{g,\gamma} \to \mathcal{X}$

)bservables

- QFT σ-Model

The Magic of String Theory

- String theory = layer-cake of QFTs: Worldsheet \rightarrow Target space \rightarrow Moduli space
- Layer-wise
 - symmetries & anomaly cancellations
 - (seem to) restrict the space of models to finite-volume spaces
 - UV/IR mixing & pheno predictions $[\rightarrow arXiv:2407.06207]$

$$\{(\mathcal{X}^{1,d},G_{\mu\nu}); \mathcal{F}; S[\Psi,A_{\mu},H; G_{\mu\nu}; \mathcal{G}_{AB}]\}$$
 (broken supersymmetric) target-spacetime QFT

classical Equations of Motion = quantum stability

$$\left\{ (\Sigma_g, \gamma_{ij}); \; \mathcal{X}^{(d-1)}; \; S[X^{\mu}; \; \gamma_{ij}; \; G_{\mu\nu}] \right\}$$
 superconformal worldsheet QFT

$\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{D}[X] e^{-iS[X; \gamma_{ij}, G_{\mu\nu}, \dots]/\hbar}$ $\mathbf{X}^{\mu}(\xi) \colon \Sigma_{g,\gamma} \to \mathcal{X}$

QFT σ-Model

The Magic of String Theory

- String theory = layer-cake of QFTs: Worldsheet \rightarrow Target space \rightarrow Moduli space
- Layer-wise
 - symmetries & anomaly cancellations
 - (seem to) restrict the space of models to finite-volume spaces
 - UV/IR mixing & pheno predictions $[\rightarrow arXiv:2407.06207]$

 $\{(\mathcal{F},\mathcal{G}_{AB}); \ldots\}$ moduli-space QFT classical Equations of Motion = quantum stability

 $\{(\mathcal{X}^{1,d},G_{\mu\nu}); \; \mathcal{F}; \; S[\Psi,A_{\mu},H; \; G_{\mu\nu}; \; \mathcal{G}_{AB}]\}$ (broken supersymmetric) target-spacetime QFT

classical Equations of Motion = quantum stability

); $S[X^{\mu}; \gamma_{ij}; G_{\mu\nu}]$ superconformal worldsheet QFT

that may contain our World 😇

$\begin{array}{c} \Psi \rightarrow e^{i\phi_{\Phi}} \Psi \\ \hline Vorldsheet SuSy} \begin{bmatrix} V \simeq V + i(\Theta - \overline{\Theta}) \end{bmatrix} \leftrightarrow \Sigma \end{array}$

A Telegraphic Summary

Complex Abelian

[U(1;ℂ) ≈ ℂ *] ⁿ equivalence classes

Superfields:

twisted-chira

Hamilton's Action:

- "D-terms"
- Mixed terms

Superspace & Calculus

Spin(1,1|2,2)

- Superfields = "functions" of $(\xi^{\pm\pm} | \zeta^{\pm}, \bar{\zeta}^{\pm}), \zeta^2=0$
 - Reducible: $\Phi: \bar{D}_+\Phi=0$ & $\bar{D}_+\Sigma=0=D_-\Sigma$ ("haploid" = 2×"quartoid")
- One more thing:
 - (Twisted-)chiral superfield close under multiplication
 - If $\bar{D}_{+}\Phi=0$, then $\bar{D}_{+}(\Phi_{1}\Phi_{2})=0$; also, $\bar{D}_{+}1=0$; "chiral ring"
 - If $\bar{D}_{+}\Sigma \neq 0 \neq D_{-}\Sigma$, then $\bar{D}_{+}(\Sigma_{1}\Sigma_{2}) = 0 = D_{-}(\Sigma_{1}\Sigma_{2})$; "tw.-chiral ring"

$\begin{array}{c} Vorldsheet SuSy \begin{bmatrix} \Psi \rightarrow e^{-iq_{\Phi} \cup \Phi} \\ V \simeq V + i(\Theta - \overline{\Theta}) \end{bmatrix} \leftrightarrow \Sigma \end{array}$

A Telegraphic Summary

Complex Abelian

Superfields:

twisted-chira

[U(1;ℂ) ≈ ℂ *] ⁿ equivalence classes **Hamilton's Action:**

- "D-terms"
- Mixed terms

Superspace & Calculus

Spin(1,1|2,2)

- Superfields = "functions" of $(\xi^{\pm\pm} | \zeta^{\pm}, \zeta^{\pm})$, $\zeta^2 = 0$
 - Reducible: $\Phi: \bar{D}_+\Phi=0$ & $\bar{D}_+\Sigma=0=D_-\Sigma$ ("haploid" = 2×"quartoid")
- One more thing:
 - (Twisted-)chiral superfield close under multiplication
 - If $\bar{D}_{+}\Phi = 0$, then $\bar{D}_{+}(\Phi_{1}\Phi_{2}) = 0$; also, $\bar{D}_{+}1 = 0$; "chiral ring"
 - If $\bar{D}_{+}\Sigma = 0 = D_{-}\Sigma$, then $\bar{D}_{+}(\Sigma_{1}\Sigma_{2}) = 0 = D_{-}(\Sigma_{1}\Sigma_{2})$; "tw.-chiral ring"
- And another: $d^2 \varsigma W(\Phi) + h.c.$ is supersymmetric "F-term"
- © & $\int d^4 \varsigma \, \overline{\Phi} \, e^{q_{\Phi} V} \Phi = \int d^4 \varsigma \, \overline{\Phi} \, \Phi + \dots \text{"D-terms"} + \text{"Φ-Σ mixing."}$

Worldsheet SuSy

A Telegraphic Summary

 $\Phi \to e^{-iq_{\Phi}\Theta}\Phi$ $V \simeq V + i(\Theta - \overline{\Theta}) \to \Sigma$

an

Ningham I

"D-terms"

Mixed terms

Complex Abelian $[U(1;\mathbb{C}) \approx \mathbb{C}^*]^n$

Superfields:

twisted-chiral

(1;ℂ) ≈ ℂ *] ⁿ guivalence classes

Spin(1,1|2,2)

Superspace & Calculus

Hamilton's Action:

Gauge Symmetry

- Superfields = "functions" of $(\xi^{\pm\pm} | \zeta^{\pm}, \zeta^{\pm}), \zeta^2 = 0$
 - **Reducible:** $\Phi: \bar{D}_{\pm}\Phi = 0$ & $\bar{D}_{+}\Sigma = 0 = D_{-}\Sigma$ ("haploid" = 2×"quartoid")
- One more thing:
 - © (Twisted-)chiral superfield close under multiplication
 - If $\bar{D}_{\pm}\Phi = 0$, then $\bar{D}_{\pm}(\Phi_1\Phi_2) = 0$; also, $\bar{D}_{\pm}1 = 0$; "chiral ring"
 - If $\bar{D}_{+}\Sigma = 0 = D_{-}\Sigma$, then $\bar{D}_{+}(\Sigma_{1}\Sigma_{2}) = 0 = D_{-}(\Sigma_{1}\Sigma_{2})$; "tw.-chiral ring"
- And another: $\int d^2 \zeta W(\Phi) + h.c.$ is supersymmetric "F-term"
- © & $\int d^4 \varsigma \, \overline{\Phi} \, e^{q_\Phi V} \Phi = \int d^4 \varsigma \, \overline{\Phi} \, \Phi + \dots \text{"D-terms"} + \text{"Φ-Σ mixing."}$
 - Now, $\int d^2 \varsigma W(\Phi) + h.c. = \underline{F}W' + ... + h.c. & \int d^4 \varsigma \overline{\Phi} \Phi = \underline{\overline{F}}\underline{F} + ...$
 - So, $\delta_F(\int d^4 \varsigma \, \overline{\Phi} \, \Phi + \int d^2 \varsigma \, W + \text{h.c.}) = 0 \Rightarrow \underline{\bar{F}} = -W' \xrightarrow{PE} |W'|^2 \xrightarrow{Morse theory!}$

Worldsheet SuSy

A Telegraphic Summary

 $\Phi \to e^{-iq_{\Phi}\Theta}\Phi$ $V \simeq V + i(\Theta - \overline{\Theta}) \to \Sigma$

lian

Mixed terms

Complex Abelian [U(1·**C**) ≈ **C** *1 ⁿ

twisted-chiral

[U(1;**ℂ**) ≈ **ℂ** *] ⁿ • equivalence classes

Spin(1,1|2,2)

Superspace & Calculus

Hamilton's Action:

Gauge Symmetry

- Superfields = "functions" of $(\xi^{\pm\pm} | \varsigma^{\pm}, \bar{\varsigma}^{\pm}), \varsigma^2=0$
 - **Reducible**: $\Phi: \bar{D}_{\pm}\Phi = 0$ & $\bar{D}_{+}\Sigma = 0 = D_{-}\Sigma$ ("haploid" = 2×"quartoid")
- One more thing:
 - (Twisted-)chiral superfield close under multiplication
 - If $\bar{D}_{\pm}\Phi = 0$, then $\bar{D}_{\pm}(\Phi_1\Phi_2) = 0$; also, $\bar{D}_{\pm}1 = 0$; "chiral ring"
 - If $\bar{D}_+\Sigma = 0 = D_-\Sigma$, then $\bar{D}_+(\Sigma_1\Sigma_2) = 0 = D_-(\Sigma_1\Sigma_2)$; "tw.-chiral ring"
- And another: $\int d^2 \varsigma W(\Phi) + h.c.$ is supersymmetric "F-term"
- © & $\int d^4 \varsigma \, \overline{\Phi} \, e^{q_\Phi V} \Phi = \int d^4 \varsigma \, \overline{\Phi} \, \Phi + \dots \text{"D-terms"} + \text{"Φ-Σ mixing."}$
 - Now, $\int d^2 \varsigma W(\Phi) + h.c. = \underline{F}W' + \dots + h.c. \& \int d^4 \varsigma \overline{\Phi} \Phi = \underline{\overline{F}}\underline{F} + \dots$
 - So, $\delta_F(\int d^4 \varsigma \, \overline{\Phi} \, \Phi + \int d^2 \varsigma \, W + \text{h.c.}) = 0 \Rightarrow \underline{\bar{F}} = -W' \xrightarrow{PE} |W'|^2 \xrightarrow{Morse theory!}$
- \bigcirc <u>Also</u>: $\int d\varsigma^+ d\bar{\varsigma}^- \widetilde{W}(\Sigma) + h.c.$ is supersymmetric "tw. F-term"
 - Simplest: $t \int d\varsigma^+ d\bar{\varsigma}^- \Sigma + \text{h.c.} = t_R \underline{\mathcal{D}} + t_I \underline{\mathcal{F}}$, with $\Sigma = [\underline{\boldsymbol{\sigma}}; \bar{\lambda}_+, \lambda_-; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$

GLSM

- © Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$

GLSM

- Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$
- Twisted chiral: $\Sigma = [\underline{\sigma}; \lambda_{-}, \overline{\lambda}_{+}; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$ for each $U(1; \mathbb{C}) = \mathbb{C}^*$

CLSM

- © Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$
- Twisted chiral: $\Sigma = [\underline{\sigma}; \lambda_{-}, \overline{\lambda}_{+}; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$ for each $U(1; \mathbb{C}) = \mathbb{C}^*$
 - Also, separate left and right "R-symmetry," $U_L(1) \times U_R(1)$

GLSM

- Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$
- Twisted chiral: $\Sigma = [\underline{\sigma}; \lambda_{-}, \overline{\lambda}_{+}; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$ for each $U(1; \mathbb{C}) = \mathbb{C}^*$
 - Also, separate left and right "R-symmetry," $U_L(1) \times U_R(1)$
- "D-terms": $\sum_{i} |\underline{F}_{i}|^{2} + \underline{\mathcal{D}}\left(\sum_{i} q_{i} |x_{i}|^{2}\right) + (\underline{\mathcal{D}}^{2} + \underline{\mathcal{F}}^{2}) + \dots$
- \circ "F-terms": $\sum_{i} \underline{F}_{i} W'_{i}(x) + t_{R} \underline{\mathscr{D}} + t_{I} \underline{\mathscr{F}} + \dots$

GLSM

- Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$
- Twisted chiral: $\Sigma = [\underline{\sigma}; \lambda_{-}, \overline{\lambda}_{+}; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$ for each $U(1; \mathbb{C}) = \mathbb{C}^*$
 - Also, separate left and right "R-symmetry," $U_L(1) \times U_R(1)$
- "D-terms": $\sum_{i} |\underline{F}_{i}|^{2} + \underline{\mathcal{D}}\left(\sum_{i} q_{i} |x_{i}|^{2}\right) + (\underline{\mathcal{D}}^{2} + \underline{\mathcal{F}}^{2}) + \dots$
- \circ "F-terms": $\sum_{i} \underline{F}_{i} W'_{i}(x) + t_{R} \underline{\mathscr{D}} + t_{I} \underline{\mathscr{F}} + \dots$

CLSM

- Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$
- Twisted chiral: $\Sigma = [\underline{\sigma}; \lambda_{-}, \overline{\lambda}_{+}; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$ for each $U(1; \mathbb{C}) = \mathbb{C}^*$
 - Also, separate left and right "R-symmetry," $U_L(1) \times U_R(1)$
- "D-terms": $\sum_{i} |\underline{F}_{i}|^{2} + \mathcal{D}(\sum_{i} q_{i} |x_{i}|^{2}) + (\mathcal{D}^{2} + \mathcal{F}^{2}) + \dots$
- "F-terms": $\sum_{i} \underline{F}_{i} W'_{i}(x) + t_{R} \underline{\mathcal{D}} + t_{I} \underline{\mathcal{F}} + \dots$
- $PE = \left[\sum_{i} q_{i} |x_{i}|^{2} t_{R} \right]^{2} + |f(x)|^{2} + |p|^{2} \sum_{i} \left| \frac{\partial f}{\partial x_{i}} \right|^{2} + t_{I}^{2} + |\sigma|^{2} \sum_{i} q_{i}^{2} |x_{i}|^{2}$

CLSM

- Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$
- Twisted chiral: $\Sigma = [\underline{\sigma}; \lambda_{-}, \overline{\lambda}_{+}; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$ for each $U(1; \mathbb{C}) = \mathbb{C}^*$
 - Also, separate left and right "R-symmetry," $U_L(1) \times U_R(1)$
- "D-terms": $\sum_{i} |\underline{F}_{i}|^{2} + \mathcal{D}(\sum_{i} q_{i} |x_{i}|^{2}) + (\mathcal{D}^{2} + \mathcal{F}^{2}) + \dots$
- "F-terms": $\sum_{i} \underline{F}_{i} W'_{i}(x) + t_{R} \underline{\mathcal{D}} + t_{I} \underline{\mathcal{F}} + \dots$

$$PE = \left[\sum_{i} q_{i} |x_{i}|^{2} - t_{R} \right]^{2} + \left[f(x) |^{2} + \left[p |^{2} \sum_{i} \left| \frac{\partial f}{\partial x_{i}} \right|^{2} \right] + t_{I}^{2} + \left[\sigma |^{2} \sum_{i} q_{i}^{2} |x_{i}|^{2} \right] \right]$$

$$= 0$$

$$= 0$$

GLSM Systems of algebraic equations

- Chiral: $X_i = [x; \psi_{\pm}; F]_i \rightarrow \text{coordinate fields for } X$
 - & $P = [p; \pi_{\pm}; F_p] \rightarrow$ fibre coordinate, line bundle \mathcal{L}_X
 - Superpotential: $W = P^a f_a(X) \rightarrow \text{(quasi-)homogeneous, } q(p^a) = -q(f_a)$
- Twisted chiral: $\Sigma = [\underline{\sigma}; \lambda_{-}, \overline{\lambda}_{+}; \underline{\mathcal{D}} i\underline{\mathcal{F}}]$ for each $U(1; \mathbb{C}) = \mathbb{C}^*$
 - Also, separate left and right "R-symmetry," $U_L(1) \times U_R(1)$
- "D-terms": $\sum_{i} |\underline{F}_{i}|^{2} + \mathcal{D}(\sum_{i} q_{i} |x_{i}|^{2}) + (\mathcal{D}^{2} + \mathcal{F}^{2}) + \dots$
- "F-terms": $\sum_{i} \underline{F}_{i} W'_{i}(x) + t_{R} \underline{\mathcal{D}} + t_{I} \underline{\mathcal{F}} + \dots$

$$PE = \left[\sum_{i} q_{i} |x_{i}|^{2} - t_{R} \right]^{2} + \left[f(x) |^{2} + \left[p |^{2} \sum_{i} \left| \frac{\partial f}{\partial x_{i}} \right|^{2} \right] + t_{I}^{2} + \left[\sigma |^{2} \sum_{i} q_{i}^{2} |x_{i}|^{2} \right] \right] = 0$$

$$= 0$$

$$= 0$$

- → Toric Geometry
- In pictures, e.g.:

$$|f_a(x)|^2 = 0 \& |p_a|^2 \sum_i \left| \frac{\partial f_a}{\partial x_i} \right|^2 = 0$$

$$\leftarrow W = f(x) \text{ LGO} \xrightarrow{t_I}_0 \mathbb{P}^n[q_f] \xrightarrow{}_{t_R}$$

- In pictures, e.g.:
 - \bigcirc Also: $c_1(f^{-1}(0) \subset \mathbb{P}^n) = (n+1) q_f$: Ricci-flat for $q_f = n+1$

$$|f_a(x)|^2 = 0 \& |p_a|^2 \sum_i \left| \frac{\partial f_a}{\partial x_i} \right|^2 = 0$$

$$\leftarrow W = f(x) \text{ LGO } t_I \cap \mathbb{P}^n[q_f] \rightarrow t_R$$

- In pictures, e.g.:
 - \bigcirc Also: $c_1(f^{-1}(0) \subset \mathbb{P}^n) = (n+1) q_f$: Ricci-flat for $q_f = n+1$
 - More involved: $F_m^{(n)}[c_1]$ where $F_m^{(n)}$ is the m-twisted \mathbb{P}^{n-1} -bundle over \mathbb{P}^1
 - $\mathbb{P} \sim \text{Hirzebruch: } \{p_0(\xi,\eta) := \xi_0 \eta_0^m + \xi_1 \eta_1^m = 0\} \subset \mathbb{P}^n \times \mathbb{P}^1: H^2(F_m^{(n)}; \mathbb{Z}) = J_1 \oplus_{\mathbb{Z}} J_2$

$$|f_a(x)|^2 = 0 \& |p_a|^2 \sum_i \left| \frac{\partial f_a}{\partial x_i} \right|^2 = 0$$

$$\leftarrow W = f(x) \text{ LGO } t_I \cap \mathbb{P}^n[q_f] \xrightarrow{t_R} t_R$$

- In pictures, e.g.:
 - \bigcirc Also: $c_1(f^{-1}(0) \subset \mathbb{P}^n) = (n+1) q_f$: Ricci-flat for $q_f = n+1$
 - ${\mathbb P}^m$ More involved: $F_m^{\scriptscriptstyle (n)}[c_1]$ where $F_m^{\scriptscriptstyle (n)}$ is the m-twisted ${\mathbb P}^{n-1}$ -bundle over ${\mathbb P}^1$
 - $P \sim \text{Hirzebruch: } \{p_0(\xi,\eta) := \xi_0 \eta_0^m + \xi_1 \eta_1^m = 0\} \subset \mathbb{P}^n \times \mathbb{P}^1: H^2(F_m^{(n)}; \mathbb{Z}) = J_1 \oplus_{\mathbb{Z}} J_2$

So,
$$\vec{q}$$
:
$$\begin{bmatrix} p & \xi_0 & \cdots & \xi_n & \eta_0 & \eta_1 \\ -(n+1) & 1 & \cdots & 1 & 0 & 0 \\ -2 & 0 & \cdots & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\text{toric}} \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix} & & (r_1, r_2)$$

→ Toric Geometry

$$|f_a(x)|^2 = 0 \& |p_a|^2 \sum_i \left| \frac{\partial f_a}{\partial x_i} \right|^2 = 0$$

$$\leftarrow W = f(x) \text{ LGO } t_I \cap \mathbb{P}^n[q_f] \to t_R$$

- In pictures, e.g.:
 - \bigcirc Also: $c_1(f^{-1}(0) \subset \mathbb{P}^n) = (n+1) q_f$: Ricci-flat for $q_f = n+1$
 - More involved: $F_m^{(n)}[c_1]$ where $F_m^{(n)}$ is the m-twisted \mathbb{P}^{n-1} -bundle over \mathbb{P}^1
 - $P \sim \text{Hirzebruch: } \{p_0(\xi,\eta) := \xi_0 \eta_0^m + \xi_1 \eta_1^m = 0\} \subset \mathbb{P}^n \times \mathbb{P}^1: H^2(F_m^{(n)}; \mathbb{Z}) = J_1 \oplus_{\mathbb{Z}} J_2$

So,
$$\vec{q}$$
:
$$\begin{bmatrix} p & \xi_0 & \cdots & \xi_n & \eta_0 & \eta_1 \\ -(n+1) & 1 & \cdots & 1 & 0 & 0 \\ -2 & 0 & \cdots & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\text{toric}} \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix} & & & (r_1, r_2)$$

The deg- $\begin{pmatrix} 1 \\ -m \end{pmatrix}$ (equivalence class of) section(s):

$$x_{1} := \left[\left(\frac{\xi_{0}}{\eta_{1}^{m}} - \frac{\xi_{1}}{\eta_{0}^{m}} \right) \mod \frac{p_{0}(\xi, \eta)}{(\eta_{0}\eta_{1})^{m}} \right] = \begin{cases} +2\xi_{0}/\eta_{1}^{m}, & \eta_{1} \neq 0; \\ -2\xi_{1}/\eta_{0}^{m}, & \eta_{0} \neq 0. \end{cases}$$
(—just like the Wu-Yang magnetic monopole!)

→ Toric Geometry

$$|f_a(x)|^2 = 0 \& |p_a|^2 \sum_i \left| \frac{\partial f_a}{\partial x_i} \right|^2 = 0$$

$$\leftarrow W = f(x) \text{ LGO } t_I \cap \mathbb{P}^n[q_f] \xrightarrow{t_R}$$

- In pictures, e.g.:
 - \bigcirc Also: $c_1(f^{-1}(0) \subset \mathbb{P}^n) = (n+1) q_f$: Ricci-flat for $q_f = n+1$
 - ${\mathbb P}^m$ More involved: $F_m^{\scriptscriptstyle (n)}[c_1]$ where $F_m^{\scriptscriptstyle (n)}$ is the m-twisted ${\mathbb P}^{n-1}$ -bundle over ${\mathbb P}^1$

So,
$$\vec{q}$$
:
$$\begin{bmatrix} p & \xi_0 & \cdots & \xi_n & \eta_0 & \eta_1 \\ -(n+1) & 1 & \cdots & 1 & 0 & 0 \\ -2 & 0 & \cdots & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\text{toric}} \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix} & & (r_1, r_2)$$

- ⊚III = LGO

LGO C GLSM

$$m = 0$$

$$m = 1$$

$$m=2$$

$$m=3$$

- The "phase diagram" = "secondary fan"
 - \bigcirc determines the $\langle x_i \rangle$ pattern:

	$ x_0 $	$ x_1 $	$ x_2 $	 $ x_n $	$ x_{n+1} $	$ x_{n+2} $
$oldsymbol{i}$	0	0	0	 0	*	*
\mathbf{I}	0	*	*	 *	*	*
ii	0	0	*	 *	0	0
II	0	see (2.9)	*	 *	*	*
iii	0	$\sqrt{r_1}$	0	 0	0	0
III	$\sqrt{\frac{mr_1+r_2}{(n-1)m+2}}$	$\sqrt{\frac{(m-2)r_1+nr_2}{(n-1)m+2}}$	0	 0	0	0
iv	$\sqrt{-r_1/n}$	0	0	 0	0	0
\mathbf{IV}	$\sqrt{-r_1/n}$	0	0	 0	*	*

- The "phase diagram" = "secondary fan"
 - is the toric rep. of the (enlarged/complete) "Kähler structure"

- The "phase diagram" = "secondary fan"
 - is the toric rep. of the (enlarged/complete) "Kähler structure"
 - \bigcirc "Tropical geometry" \leftrightarrow "large cpx str." $\stackrel{\text{mirror}}{\longleftrightarrow}$ "large Kähler class"
 - he (semiclassical) space/diagram of GLSM "phases"

- The "phase diagram" = "secondary fan"
 - is the toric rep. of the (enlarged/complete) "Kähler structure"
 - \bigcirc "Tropical geometry" \leftrightarrow "large cpx str." $\stackrel{\text{mirror}}{\longleftrightarrow}$ "large Kähler class"
 - the (semiclassical) space/diagram of GLSM "phases"
 - becomes modified by "worldsheet instantons" (cumulative effects)
 - \bigcirc ...with shifts and "thickening" of the diagram \rightarrow "amoebas"
 - \bigcirc (\rightarrow "A discriminants," "Horn uniformization," ... $\boxed{\checkmark}$)

- The "phase diagram" = "secondary fan"
 - is the toric rep. of the (enlarged/complete) "Kähler structure"
 - © "Tropical geometry" ↔ "large cpx str." ← "large Kähler class"
 - becomes modified by "worldsheet instantons" (cumulative effects)
 - \bigcirc ...with shifts and "thickening" of the diagram \rightarrow "amoebas"
 - \bigcirc (\rightarrow "A discriminants," "Horn uniformization," ... $\boxed{\checkmark}$)
 - ©"log-geometry" ↔ "smallish cpx str." ← "small Kähler class"

- The "phase diagram" = "secondary fan"
 - is the toric rep. of the (enlarged/complete) "Kähler structure"
 - \bigcirc "Tropical geometry" \leftrightarrow "large cpx str." $\stackrel{\text{mirror}}{\longleftrightarrow}$ "large Kähler class"
 - the (semiclassical) space/diagram of GLSM "phases"
 - becomes modified by "worldsheet instantons" (cumulative effects)
 - \bigcirc ...with shifts and "thickening" of the diagram \rightarrow "amoebas"
 - \bigcirc (\rightarrow "A discriminants," "Horn uniformization," ... $\boxed{\checkmark}$)
 - [□] "log-geometry" ↔ "smallish cpx str." ← "small Kähler class"
- Mirrors the "complex structure" w/"discriminant locus"
 - where the ground-state ("target") space singularizes

$$F_{m}^{n}:\begin{bmatrix} \frac{p \mid x_{0} \mid x_{1} \mid \cdots \mid x_{n} \\ -(n+1) \mid 1 \mid 1 \mid \cdots \mid 1 \end{bmatrix} \\ F_{m}^{(n)}:\begin{bmatrix} \frac{p \mid x_{1} \mid x_{2} \mid \cdots \mid x_{n} \mid y_{0} \mid y_{1} \\ -n \mid 1 \mid 1 \mid \cdots \mid 1 \mid 0 \mid 0 \\ m-2 \mid -m \mid 0 \mid \cdots \mid 0 \mid 1 \mid 1 \end{bmatrix}$$

- From the $U(1;\mathbb{C})^n$ -charges, q_i^a , def. $\vec{\nu}_i \in (N \approx \mathbb{Z}^n)$: $\sum_i q_i^a \vec{\nu}_i = 0$
 - $\vec{\nu}_i \in \Sigma$ (spanning) fan, up to $\mathrm{GL}(n;\mathbb{Z})$ lattice automorphisms

\mathbb{P}^4	ν_0	ν_1	ν_2	ν_3	$ u_4$
	-1	1	0 1 0	0	0
Λ *	-1	0	1	0	0
$\Delta \mathbb{P}^4$	-1	0	0	1	0
	-1	0	0		1

$F_m^{(4)}$	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6
	-1	1	0	0	0	-m
Λ*	-1	0	1	0	0	-m
$\Delta F_m^{(4)}$	0	0	0	1	0	-m
	0	0	0	0	1	1

$$F_{m}^{n}:\begin{bmatrix} \frac{p & x_{0} & x_{1} & \cdots & x_{n} \\ -(n+1) & 1 & 1 & \cdots & 1 \end{bmatrix} \\ F_{m}^{(n)}:\begin{bmatrix} \frac{p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

- From the $U(1;\mathbb{C})^n$ -charges, q_i^a , def. $\vec{\nu}_i \in (N \approx \mathbb{Z}^n)$: $\sum_i q_i^a \vec{\nu}_i = 0$
 - $\vec{\nu}_i \in \Sigma$ (spanning) fan, up to $\mathrm{GL}(n; \mathbb{Z})$ lattice automorphisms

\mathbb{P}^4	ν_0	ν_1	ν_2	ν_3	$ u_4$
					0 0 0 1
Λ *	-1	0	1	0	0
$\Delta_{\mathbb{P}^4}$	-1	0	0	1	0
	-1	0	0	0	1

$F_m^{(4)}$	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6
	-1	1	0	0	0	-m
Λ*	-1	0	1	0	0	-m
$\Delta F_m^{(4)}$	0	0	0	1	0	-m
	0	0	0	0	1	1

$$\longrightarrow \Sigma \longrightarrow \Delta^*$$

- Cox variables: $\vec{\nu}_i \mapsto x_i$, then $f(x) = \sum_{\vec{\mu}_k \in \Delta} \left(a_k \prod_{\vec{\nu}_i \in \Delta^*} x_i^{\vec{\nu}_i \cdot \vec{\mu}_k + 1} \right)$
 - where Δ is the *polar* of the polytope Δ^* spec. by $\vec{\nu}_i \in \Sigma(1)$
 - Standard for "reflexive" Δ^* : $\Delta := (\Delta^*)^\circ \& (\Delta)^\circ = \Delta^*$ (Fano: Ricci > 0)

$$F_{m}^{n}:\begin{bmatrix} \frac{p \mid x_{0} \mid x_{1} \mid \cdots \mid x_{n} \\ -(n+1) \mid 1 \mid 1 \mid \cdots \mid 1 \end{bmatrix} \\ F_{m}^{(n)}:\begin{bmatrix} \frac{p \mid x_{1} \mid x_{2} \mid \cdots \mid x_{n} \mid y_{0} \mid y_{1} \\ -n \mid 1 \mid 1 \mid \cdots \mid 1 \mid 0 \mid 0 \\ m-2 \mid -m \mid 0 \mid \cdots \mid 0 \mid 1 \mid 1 \end{bmatrix}$$

- From the $U(1;\mathbb{C})^n$ -charges, q_i^a , def. $\vec{\nu}_i \in (N \approx \mathbb{Z}^n)$: $\sum_i q_i^a \vec{\nu}_i = 0$
 - $\vec{\nu}_i \in \Sigma$ (spanning) fan, up to $\mathrm{GL}(n; \mathbb{Z})$ lattice automorphisms

\mathbb{P}^4	ν_0	$ u_1$	ν_2	ν_3	$ u_4$
	-1	1	0 1 0	0	0
Λ*	-1	0	1	0	0
$\Delta_{\mathbb{P}^4}$	-1	0	0	1	0
	-1	0	0	0	1

$F_m^{(4)}$	ν_1	ν_2	ν_3	$ u_4$	ν_5	ν_6
	-1	1	0	0	0	-m
Λ*	-1	0	1	0	0	-m
$\Delta F_m^{(4)}$	0	0	0	1	0	-m
	0	0	0	0	1	1

- Cox variables: $\vec{\nu}_i \mapsto x_i$, then $f(x) = \sum_{\vec{\mu}_k \in \Delta} \left(a_k \prod_{\vec{\nu}_i \in \Delta^*} x_i^{\vec{\nu}_i \cdot \vec{\mu}_k + 1} \right)$
 - where Δ is the *polar* of the polytope Δ^* spec. by $\vec{\nu}_i \in \Sigma(1)$
 - \bigcirc Standard for "reflexive" Δ^* : $\Delta := (\Delta^*)^\circ \& (\Delta)^\circ = \Delta^*$ (Fano: Ricci > 0)
 - ©The standard polar operation *fails* for non-convex polytopes (non-Fano varieties)
 - ⊌For non-convex, <u>transpolar</u>: $\Delta := (\Delta^*)^{\triangledown}$ & $(\Delta)^{\triangledown} = \Delta^*$ (in fact, oft-practiced)
 - ...introduces flip-folded "multifans" that star-subdivide "multitopes" 😡 😡

→ Toric Geometry

$$F_{m}^{n}:\begin{bmatrix} \frac{p \mid x_{0} \mid x_{1} \mid \cdots \mid x_{n} \\ -(n+1) \mid 1 \mid 1 \mid \cdots \mid 1 \end{bmatrix} \\ F_{m}^{(n)}:\begin{bmatrix} \frac{p \mid x_{1} \mid x_{2} \mid \cdots \mid x_{n} \mid y_{0} \mid y_{1} \\ -n \mid 1 \mid 1 \mid \cdots \mid 1 \mid 0 \mid 0 \\ m-2 \mid m \mid 0 \mid \cdots \mid 0 \mid 1 \mid 1 \end{bmatrix}$$

From the $U(1;\mathbb{C})^n$ -charges, q_i^a , def. $\vec{\nu}_i \in (N \approx \mathbb{Z}^n)$: $\sum_i q_i^a \vec{\nu}_i = 0$

 $|\hat{\nu}|_i \in \Sigma$ (spanning) fan, up to $\mathrm{GL}(n; \mathbb{Z})$ lattice automorphisms

\mathbb{P}^4	ν_0	ν_1	ν_2	ν_3	$ u_4$
	$\begin{vmatrix} -1 \\ -1 \\ -1 \\ -1 \end{vmatrix}$	1	0	0	0
$\Lambda\star$	-1	0	1	0	0
Δ p 4	-1	0	0	1	0
	-1	0	0	0	$1 \mid$

$F_m^{(4)}$	ν_1	ν_2	ν_3	ν_4		ν_6
	-1	1	0	0	0	-m
Δ_{E}^{\star} (4)	-1	0	1 0	0	0	-m
$\Delta F_m^{(4)}$	0	0	0	1	0	-m
	0	0	0	0	1	1

Cox variables: $\vec{\nu}_i \mapsto x_i$, then $f(x) = \sum_{\vec{\mu}_i \in \Delta} \left(a_k \prod_{\vec{\nu}_i \in \Delta^*} x_i^{\vec{\nu}_i \cdot \vec{\mu}_k + 1} \right)$

- where Δ is the *polar* of the polytope Δ^* spec. by $\vec{\nu}_i \in \Sigma(1)$
 - \bigcirc Standard for "reflexive" Δ^* : $\Delta := (\Delta^*)^\circ \& (\Delta)^\circ = \Delta^*$ (Fano: Ricci > 0)
 - The standard polar operation <u>fails</u> for non-convex polytopes (non-Fano varieties)
 - \bigcirc For non-convex, <u>transpolar</u>: $\Delta := (\Delta^*)^{\nabla} \& (\Delta)^{\nabla} = \Delta^*$ (in fact, oft-practiced)
 - …introduces flip-folded "multifans" that star-subdivide "multitopes" 😡 😡

 $F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

 $x_{n+j+1} := y_j$

→ Toric Geometry "Plan B"

- Given the q_i^a , define: $f(x) = a_0 (\prod x = \prod_i x_i) + \sum_k a_k \prod_i x_i^{e_{ik}}$
 - - Wey to parametrizing the geometry/dynamics of complex structure moduli
 - © The transpose-mirror, $^{\mathsf{T}}(\Pi x)$, is Tyurin-degenerate = \mathcal{H} ∪ \mathcal{C} : $c_1(\mathcal{H} \cap \mathcal{C}) = 0$ arXiv:hep-th/9201014, arXiv:1611.10300, arXiv:2205.12827

 $F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

- © Given the q_i^a , define: $f(x) = a_0 (\prod x = \prod_i x_i) + \sum_k a_k \prod_i x_i^{e_{ik}}$
 - - See Yellow to parametrizing the geometry/dynamics of complex structure moduli
 - © The transpose-mirror, $^{\mathsf{T}}(\Pi x)$, is Tyurin-degenerate = \mathcal{H} ∪ \mathcal{C} : $c_1(\mathcal{H} \cap \mathcal{C}) = 0$ arXiv:hep-th/9201014, arXiv:1611.10300, arXiv:2205.12827
- choose a_k and e_{ik} so $\{f(x)=0\} \cap \{df(x)=0\} = \emptyset \leftarrow \text{transverse}$
 - $\Pi_i x_i^{e_{ik}}$: smoothing (a_k -param.) deformations...
 - \odot ...generated by $\delta^i(x) \partial_i$, $(\partial_i = \frac{\partial}{\partial x_i}, \partial_i^2(\Pi x) \equiv 0$: "distance-1")
 - where $\mathbf{b}^{i}(x) = \prod_{j \neq i} x_{j}^{d_{ij}}$ just as $\delta | \psi_{n} \rangle = \sum_{m \neq n} c_{m} | \psi_{m} \rangle$ in QM

 $F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

- © Given the q_i^a , define: $f(x) = a_0 (\prod x = \prod_i x_i) + \sum_k a_k \prod_i x_i^{e_{ik}}$
 - - Wey to parametrizing the geometry/dynamics of complex structure moduli
 - The transpose-mirror, $^{\mathsf{T}}(\Pi x)$, is Tyurin-degenerate $=\mathcal{H}\cup\mathcal{C}$: $c_1(\mathcal{H}\cap\mathcal{C})=0$ arXiv:hep-th/9201014, arXiv:1611.10300, arXiv:2205.12827
- choose a_k and e_{ik} so $\{f(x)=0\} \cap \{df(x)=0\} = \emptyset \leftarrow \text{transverse}$
- $\Pi_i x_i^{e_{ik}}$: smoothing (a_k -param.) deformations...
- \bigcirc ... generated by $\delta^i(x) \partial_i$, $(\partial_i = \frac{\partial}{\partial x_i}, \partial_i^2(\Pi x) \equiv 0$: "distance-1")
 - where $\mathfrak{d}^i(x) = \prod_{j \neq i} x_j^{d_{ij}}$ just as $\delta | \psi_n \rangle = \sum_{m \neq n} c_m | \psi_m \rangle$ in QM
- ⊚ The monomial "hyperplanes," $b^i(x)$ ($∂_i Πx$), intersect iteratively

 $F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

- © Given the q_i^a , define: $f(x) = a_0 (\prod x = \prod_i x_i) + \sum_k a_k \prod_i x_i^{e_{ik}}$
 - - Wey to parametrizing the geometry/dynamics of complex structure moduli
- Choose a_k and e_{ik} so $\{f(x)=0\} \cap \{df(x)=0\} = \emptyset \leftarrow \text{transverse}$
 - $\Pi_i x_i^{e_{ik}}$: smoothing (a_k -param.) deformations...
 - \bigcirc ... generated by $\delta^i(x) \partial_i$, $(\partial_i = \frac{\partial}{\partial x_i}, \partial_i^2(\Pi x) \equiv 0$: "distance-1")
 - where $\mathfrak{d}^i(x) = \prod_{j \neq i} x_j^{d_{ij}}$ just as $\delta | \psi_n \rangle = \sum_{m \neq n} c_m | \psi_m \rangle$ in QM
 - The monomial "hyperplanes," $b^i(x)$ ($\partial_i \Pi x$), intersect iteratively
 - $\cup 2...$ forming the "Newton multitope" of anticanonical monomials, Δ .
 - - The transpose-mirror, ${}^{\mathsf{T}}(\Pi x + ...) = y_1 \cdot \mathfrak{c}(y) + ...$, automatically defines an LGO-like structure with "geometric" and "quantum" symmetries swapped

$F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

Construct
$$f(x) = a_0 \Pi x + \sum_k a_k \Pi_i x_i^{e_{ik}}$$
, with $x_3 = 0 = x_4$:

$F_m^{(n)}: \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

- Construct $f(x) = a_0 \Pi x + \sum_k a_k \Pi_i x_i^{e_{ik}}$, with $x_3 = 0 = x_4$:
 - \bigcirc Deformation generators: $(\mathfrak{b}^i(x) = \prod_{j \neq i} x_j^{d_{ij}}) \partial_i$

$k \in$	$\equiv \mathbb{Z}$	x_1 -indep.	x_2 -indep.	x_5 -indep.	x_6 -indep.
ge	n.:	$(x_2x_5^kx_6^{-k-m})\partial_1$	$(x_1 x_5^k x_6^{m-k}) \partial_2$	$(x_1^k x_2^{-k} x_6^{1+km}) \partial_5$	$(x_1^k x_2^{-k} x_5^{1+km}) \partial_6$
stri	pe:	$x_2^2 x_5^{1+k} x_6^{1-k-m}$	$x_1^2 x_5^{1+k} x_6^{1-k+m}$	$x_1^{1+k}x_2^{1-k}x_6^{2+km}$	$x_1^{1+k}x_2^{1-k}x_5^{2+km}$

 $F_{m}^{(n)} : \begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

- Construct $f(x) = a_0 \Pi x + \sum_k a_k \Pi_i x_i^{e_{ik}}$, with $x_3 = 0 = x_4$:
 - © Deformation generators: $(\mathfrak{d}^i(x) = \prod_{j \neq i} x_j^{d_{ij}}) \partial_i$

$k \in \mathbb{Z}$	x_1 -indep.	x_2 -indep.	x_5 -indep.	x_6 -indep.
gen.:	$(x_2x_5^kx_6^{-k-m})\partial_1$	$(x_1 x_5^k x_6^{m-k}) \partial_2$	$(x_1^k x_2^{-k} x_6^{1+km}) \partial_5$	$(x_1^k x_2^{-k} x_5^{1+km}) \partial_6$
stripe:	$x_2^2 x_5^{1+k} x_6^{1-k-m}$	$x_1^2 x_5^{1+k} x_6^{1-k+m}$	$x_1^{1+k}x_2^{1-k}x_6^{2+km}$	$x_1^{1+k}x_2^{1-k}x_5^{2+km}$

Poset structure:

organizes the deformations

→ Toric Geometry "Plan B"

$$F_m^{(n)}: \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1} := y_j$$

→ Toric Geometry "Plan B"

$$F_m^{(n)}: \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1} := y_j$$

→ Toric Geometry "Plan B"

$$F_m^{(n)}: \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1} := y_j$$

→ Toric Geometry "Plan B"

 $F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$ $x_{n+j+1}:=y_{j}$

→ Toric Geometry "Plan B"

$$F_m^{(n)}: \begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1} := y_j$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}: \begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1} := y_{j}$$

$$\frac{x_1^3 x_5^5 x_6^3}{x_2} \frac{x_1^2 x_5^4}{x_6} \frac{x_1 x_2 x_5^4}{x_6^2} \Delta(F_1^{(2)}) \qquad \frac{x_1^3 x_5^4 x_6^4}{x_2} x_1^2 x_5^4 x_6 \frac{x_1 x_2 x_5^4}{x_6^2}$$

$$\frac{x_1^3 x_5^3 x_6}{x_2} \frac{x_1^2 x_5^3}{x_2^2} \frac{x_1 x_2 x_5^3}{x_6^2} \frac{x_2^2 x_5^3}{x_2^2} \qquad \frac{x_1^3 x_5^3 x_6^5}{x_2^2} x_1^2 x_5^3 x_6^2 \frac{x_1 x_2 x_5^3}{x_6^3} \frac{x_2^2 x_5^3}{x_6^4}$$

$$\frac{x_1^3 x_5^2 x_6^2}{x_2^2} x_1^2 x_5^2 x_6 x_1 x_2 x_5^2 \frac{x_2^2 x_5^2}{x_6^3} \frac{x_2^3 x_5^2}{x_1 x_6^2} \qquad \frac{x_1^3 x_5^2 x_6^6}{x_2^2} x_1^2 x_5^2 x_6^3 x_1 x_2 x_5^2 \frac{x_2^2 x_5^3}{x_6^3}$$

$$\frac{x_1^3 x_5 x_6^3}{x_2^2} x_1^2 x_5 x_6^2 x_1 x_2 x_5 x_6 x_2^2 x_5 \frac{x_2^3 x_5}{x_1 x_6} \qquad \frac{x_1^3 x_5 x_6^7}{x_2^2} x_1^2 x_5 x_6^4 x_1 x_2 x_5 x_6 \frac{x_2^2 x_5^2}{x_6^3}$$

$$\frac{x_1^3 x_5 x_6^3}{x_2^2} x_1^2 x_5 x_6^2 x_1 x_2 x_5 x_6 \frac{x_2^2 x_5}{x_1^2} \frac{x_2^3 x_5}{x_1^2} \qquad \frac{x_1^3 x_5 x_6^7}{x_2^2} x_1^2 x_5 x_6^4 \frac{x_1 x_2 x_5 x_6}{x_1^2} \frac{x_2^2 x_5}{x_5^2}$$

$$\frac{x_1^3 x_5 x_6^3}{x_2^2} x_1^2 x_5 x_6^4 x_1 x_2 x_5 x_6 \frac{x_2^2 x_5}{x_5^2} \frac{x_2^2 x_5}{x_5^2} \frac{x_2^2 x_5}{x_5^2} \qquad \frac{x_1^3 x_5 x_6^7}{x_2^2} x_1^2 x_5 x_6^4 \frac{x_1 x_2 x_5 x_6}{x_1 x_2 x_5 x_6} \frac{x_2^2 x_5}{x_5^2}$$

$$\frac{x_1^3 x_5 x_6^7}{x_2^2} x_1^2 x_5 x_6^4 \frac{x_1 x_2 x_5 x_6}{x_1 x_2 x_5 x_6} \frac{x_2^2 x_5}{x_5^2}$$

$$\frac{x_1^3 x_5 x_6^7}{x_2^2} x_1^2 x_5 x_6^4 \frac{x_1 x_2 x_5 x_6}{x_1 x_2 x_5 x_6} \frac{x_2^2 x_5}{x_5^2}$$

$$\frac{x_1^3 x_6^5}{x_2^2} x_1^2 x_5 x_6^4 \frac{x_1 x_2 x_5 x_6}{x_1 x_2 x_5 x_6} \frac{x_2^2 x_5}{x_5^2}$$

$$\frac{x_1^3 x_6^5}{x_2^2} x_1^2 x_5 x_6^4 \frac{x_1 x_2 x_5 x_6}{x_1 x_2 x_5 x_6} \frac{x_2^2 x_5}{x_5^2}$$

$$\frac{x_1^3 x_6^5}{x_2^2} x_1^2 x_5 x_6^4 \frac{x_1 x_2 x_6^3}{x_5^2} \frac{x_2^2 x_5}{x_5^2}$$

$$\frac{x_1^3 x_6^5}{x_2^2} x_5^2 x_5^2 \frac{x_1^2 x_5 x_6^4}{x_5^2} \frac{x_1 x_2 x_6^3}{x_5^2} \frac{x_2^2 x_5}{x_5^2}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

$$\frac{x_1^3x_5^6x_6^2}{x_2} \times \frac{x_1^2x_5^6}{x_3^6} \frac{x_1x_2x_5^6}{x_6^4}$$

$$\frac{x_1^3x_5^5x_6^3}{x_2} \times \frac{x_1^2x_5^6}{x_3^6} \frac{x_1x_2x_5^5}{x_6^3}$$

$$\frac{x_1^3x_5^5x_6^3}{x_2} \times \frac{x_1^2x_5^4}{x_3^6} \frac{x_1x_2x_5^5}{x_6^3}$$

$$\frac{x_1^3x_5^4x_6^4}{x_2^2} \times \frac{x_1^2x_5^4}{x_2^2} \times \frac{x_1x_2x_5^4}{x_6^2}$$

$$\frac{x_1^3x_5^5x_6}{x_2^2} \times \frac{x_1^2x_5^3}{x_2^2} \times \frac{x_1x_2x_5^3}{x_6^2} \frac{x_2^2x_5^3}{x_2^2}$$

$$\frac{x_1^3x_5^3x_6}{x_2^2} \times \frac{x_1^2x_5^3}{x_2^2} \times \frac{x_1x_2x_5^3}{x_6^2} \frac{x_2^2x_5^3}{x_1^2x_6^2}$$

$$\frac{x_1^3x_5^3x_6^5}{x_2^2} \times \frac{x_1^2x_5^3x_6^2}{x_2^2} \times \frac{x_1x_2x_5^3}{x_6^3} \frac{x_2^2x_5^3}{x_1^2x_6^2}$$

$$\frac{x_1^3x_5^2x_6^6}{x_2^2} \times \frac{x_1^2x_5^3x_6^2}{x_2^2} \times \frac{x_1x_2x_5^3}{x_1^2x_2^2} \times \frac{x_2^2x_5^3}{x_1^2x_6^2}$$

$$\frac{x_1^3x_5^2x_6^6}{x_2^2} \times \frac{x_1^2x_5^2x_6^4}{x_1^2x_2^2} \times \frac{x_1^2x_5^2x_6^4}{x_1^2x_2^2} \times \frac{x_2^2x_5^2}{x_1^2x_5^2}$$

$$\frac{x_1^3x_5^5x_6^7}{x_2^2} \times \frac{x_1^2x_5x_6^4}{x_1^2x_2^2} \times \frac{x_1^2x_5x_6^4}{x_1^2x_2^2} \times \frac{x_2^2x_5^2}{x_1^2x_5^2}$$

$$\frac{x_1^3x_6^5}{x_2^2x_5} \times \frac{x_1^2x_6^4}{x_5} \times \frac{x_1x_2x_6^3}{x_5} \times \frac{x_2^2x_5^2}{x_5}$$

$$\frac{x_1^3x_6^5}{x_2^2x_5} \times \frac{x_1^2x_6^6}{x_5} \times \frac{x_1x_2x_6^3}{x_5} \times \frac{x_2^2x_6^2}{x_5}$$

$$\frac{x_1^3x_6^5}{x_2^2x_5} \times \frac{x_1^2x_6^6}{x_5} \times \frac{x_1x_2x_6^3}{x_5} \times \frac{x_2^2x_6^2}{x_5}$$

$$\frac{x_1^3x_6^5}{x_2^2x_5} \times \frac{x_1^2x_6^6}{x_5} \times \frac{x_1x_2x_6^3}{x_5} \times \frac{x_2^2x_6^3}{x_5}$$

$$\frac{x_1^3x_6^5}{x_2^2} \times \frac{x_1^2x_6^6}{x_5} \times \frac{x_1x_2x_6^3}{x_5} \times \frac{x_2^2x_6^2}{x_5}$$

$$\frac{x_1^3x_6^5}{x_2^2} \times \frac{x_1^2x_6^6}{x_5} \times \frac{x_1x_2x_6^3}{x_5} \times \frac{x_2^2x_6^2}{x_5}$$

$$\frac{x_1^3x_6^6}{x_2^2} \times \frac{x_1^2x_6^6}{x_5} \times \frac{x_1x_2x_6^3}{x_5} \times \frac{x_2^2x_6^2}{x_5}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}: \begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1} := y_{j}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

Construct
$$f(x) = a_0 \Pi x + \sum_k a_k \Pi_i x_i^{e_{ik}}$$
 for $m = 1 \& m = 3$:

→ Toric Geometry "Plan B"

$$F_{m}^{(n)}:\begin{bmatrix} p & x_{1} & x_{2} & \cdots & x_{n} & y_{0} & y_{1} \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

$$x_{n+j+1}:=y_{j}$$

Construct $f(x) = a_0 \Pi x + \sum_k a_k \Pi_i x_i^{e_{ik}}$ for m = 1 & m = 3:

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

Abstract the shape (for m = 3):

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

- Abstract the shape (for m=3):
 - Non-convexity in $\Delta^* > \Sigma$
 - \rightarrow flip-folding in $\Delta = (\Delta^*)^{\nabla}$

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

- Abstract the shape (for m=3):
 - Non-convexity in $\Delta^* > \Sigma$ \rightarrow flip-folding in $\Delta = (\Delta^*)^{\nabla}$
 - $\begin{aligned} & x_i \!\leftrightarrow\! \nu_i \!\in\! \Delta^{\!\star}, \quad f(x) \!\subseteq\! \Delta \\ & \text{mirrors to} \\ & y_k \!\leftrightarrow\! \mu_k \!\in\! \Delta, \quad {}^{\!\top}\! f(y) \!\subseteq\! \Delta^{\!\star} \end{aligned}$

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

- Abstract the shape (for m=3):
 - Non-convexity in $\Delta^* > \Sigma$ \rightarrow flip-folding in $\Delta = (\Delta^*)^{\nabla}$
 - $x_i \leftrightarrow \nu_i \in \Delta^*, \quad f(x) \subseteq \Delta$ mirrors to $y_k \leftrightarrow \mu_k \in \Delta, \quad {}^{\mathsf{T}} f(y) \subseteq \Delta^*$

(non-Fano toric variety)

 ν_3

On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

- Abstract the shape (for m=3):

 - $\begin{aligned} & x_i \!\leftrightarrow\! \nu_i \!\in\! \Delta^{\!\star}, \quad f(x) \!\subseteq\! \Delta \\ & \text{mirrors to} \\ & y_k \!\leftrightarrow\! \mu_k \!\in\! \Delta, \quad {}^{\!\top}\! f(y) \!\subseteq\! \Delta^{\!\star} \end{aligned}$

On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?

 \bigcirc Flip-folded Δ 's span "multifans" $\stackrel{\longleftarrow}{\longleftarrow}$ "torus manifolds"

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

- Abstract the shape (for m=3):

 - $x_i \leftrightarrow \nu_i \in \Delta^*, \quad f(x) \subseteq \Delta$ mirrors to $x_i \leftrightarrow \nu_i \in \Delta \quad \forall f(x) \in \Delta$

 $y_k \leftrightarrow \mu_k \in \Delta$, ${}^{\mathsf{T}}f(y) \subseteq \Delta^*$

(non-Fano toric variety)

- On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?
- Real (homotopy & diffeomorphism) invariants

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

- Abstract the shape (for m=3):

 - $x_i \leftrightarrow \nu_i \in \Delta^*, \quad f(x) \subseteq \Delta$ mirrors to $y_k \leftrightarrow \mu_k \in \Delta, \quad {}^{\mathsf{T}} f(y) \subseteq \Delta^*$

On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?

- Real (homotopy & diffeomorphism) invariants
- ⊚ Not (globally) complex, but must admit <u>the</u> <u>transposed</u> polynomial section, ${}^{\mathsf{T}}f(y) \subseteq \Delta^{\mathsf{X}}$

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

- Abstract the shape (for m=3):
 - Non-convexity in $\Delta^* > \Sigma$ \rightarrow flip-folding in $\Delta = (\Delta^*)^{\nabla}$
 - $x_i \leftrightarrow \nu_i \in \Delta^*, \quad f(x) \subseteq \Delta$ mirrors to $y_k \leftrightarrow \mu_k \in \Delta, \quad ^{\mathsf{T}} f(y) \subseteq \Delta^*$

(non-Fano toric variety)

- On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?
- Real (homotopy & diffeomorphism) invariants
- ⊚ Not (globally) complex, but must admit <u>the</u> <u>transposed</u> polynomial section, ${}^{\mathsf{T}}f(y) \subseteq \Delta^{\mathsf{T}}$
- \bigcirc Flip-folded cone \leftrightarrow point obstructs global cpx. str.

 $F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

 $x_{n+j+1} := y_j$

(non-Fano toric variety)

- On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?
- Real (homotopy & diffeomorphism) invariants
- ⊚ Not (globally) complex, but must admit <u>the</u> <u>transposed</u> polynomial section, ${}^{\mathsf{T}}f(y) \subseteq \Delta^{\mathsf{T}}$
- \bigcirc Flip-folded cone \leftrightarrow point obstructs global cpx. str.

 $F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

- $\begin{array}{ccc} & x_i \!\leftrightarrow\! \nu_i \!\in\! \Delta^{\!\star}, & f(x) \!\subseteq\! \Delta \\ & \text{mirrors to} \\ & y_k \!\leftrightarrow\! \mu_k \!\in\! \Delta, & {}^{\!\top}\! f(y) \!\subseteq\! \Delta^{\!\star} \end{array}$

 $F_3^{(2)}$ (non-Fano toric variety)

On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?

- Real (homotopy & diffeomorphism) invariants
- ⊚ Not (globally) complex, but must admit <u>the</u> <u>transposed</u> polynomial section, ${}^{\mathsf{T}}f(y) \subseteq \Delta^{\mathsf{X}}$
- \bigcirc Flip-folded cone \leftrightarrow point obstructs global cpx. str.

 $F_m^{(n)}$: $\begin{bmatrix} p & x_1 & x_2 & \cdots & x_n & y_0 & y_1 \\ -n & 1 & 1 & \cdots & 1 & 0 & 0 \\ m-2 & -m & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$

→ Toric Geometry "Plan B"

- Abstract the shape (for m=3):
 - \bigcirc Non-convexity in $\Delta^{\star} > \Sigma$ \rightarrow flip-folding in $\Delta = (\Delta^*)^{\nabla}$
 - mirrors to $y_k \leftrightarrow \mu_k \in \Delta$, ${}^{\mathsf{T}}f(y) \subseteq \Delta^*$

- On what sort of space is ${}^{\mathsf{T}}f(y)$ defined?
- \bigcirc Flip-folded Δ 's span "multifans" $\stackrel{\longleftarrow}{\longleftarrow}$ "torus manifolds"
- Real (homotopy & diffeomorphism) invariants
- Not (globally) complex, but must admit the <u>transposed</u> polynomial section, ${}^{\mathsf{T}}f(y) \subseteq \Delta^{\star}$
- \bigcirc Flip-folded cone \leftrightarrow point obstructs global cpx. str.

 $\Theta \rightarrow$ local defects? 'branes? ...other "sources"? —to be continued... (for now, see <u>arXiv:2502.08002</u>)

