

Бранкофест

Београд, Србија

Nonlinearity, Nonlocality and Ultrametricity Dragovich 80

Stuart-Landau oscillators: Variations on a theme

Debashis Ghoshal

School of Physical Sciences Jawaharlal Nehru University New Delhi

May 27, 2025 BrankoFest, Belgrade, Serbia

This talk is based on (ongoing) work in collaboration with

Pragjyotish Bhuyan Gogoi (University of Delhi)
Rahul Ghosh (Shiv Nadar Institute of Excellence / IISER Berhampur)
Aryan Patel (IISER Berhampur)
Awadhesh Prasad (University of Delhi) and
Ram Ramaswamy (Indian Institute of Technology - Delhi)

Physical Review E 110, L032202 (2024) and ongoing work

Acknowledgement: All photos and some graphics are taken from the internet, from Wikimedia commons and other open sources. Credits are the due to the respective authors / sources.

Oscillations in natural and synthetic systems are ubiquitous

- Oscillations in natural and synthetic systems are ubiquitous
- ► Linear approximation near the extremum of a potential leads to simple harmonic oscillation

- Oscillations in natural and synthetic systems are ubiquitous
- ► Linear approximation near the extremum of a potential leads to simple harmonic oscillation
- All systems are subjected to perturbations—stability analysis is extremely important

- Oscillations in natural and synthetic systems are ubiquitous
- ► Linear approximation near the extremum of a potential leads to simple harmonic oscillation
- All systems are subjected to perturbations—stability analysis is extremely important
- Close to the onset of oscillation (bifurcation), the Stuart-Landau oscillator is a universal mathematical model

- Oscillations in natural and synthetic systems are ubiquitous
- Linear approximation near the extremum of a potential leads to simple harmonic oscillation
- All systems are subjected to perturbations—stability analysis is extremely important
- Close to the onset of oscillation (bifurcation), the Stuart-Landau oscillator is a universal mathematical model
- It is related to the (complex) Landau-Ginzburg theory of transition

A non-linear oscillator in two dimensions (D=2) described by the equation

$$\frac{dz}{dt} = (\varrho + i \omega - |z|^2) z$$

Lev Landau (1908–1968)

John Stuart (1929–2023)

A non-linear oscillator in two dimensions (D=2) described by the equation

$$\begin{array}{rcl} \frac{dz}{dt} & = & \left(\varrho + \mathrm{i}\,\omega - |z|^2\right)z \\ \Rightarrow & \frac{dr}{dt} & = & \left(\varrho - r^2\right)r, & \frac{d\theta}{dt} = \omega, & \left(r^2 = |z|^2\right) \end{array}$$

Lev Landau (1908–1968)

John Stuart (1929–2023)

A non-linear oscillator in two dimensions (D = 2) described by the equation

$$\begin{array}{lcl} \frac{dz}{dt} & = & \left(\varrho + \mathrm{i}\,\omega - |z|^2\right)z \\ \Rightarrow & \frac{dr}{dt} & = & \left(\varrho - r^2\right)r, \quad \frac{d\theta}{dt} = \omega, \quad \left(r^2 = |z|^2\right) \end{array}$$

The second equation describes a one-dimensional system—it is in fact linear:

Lev Landau (1908–1968)

John Stuart (1929–2023)

A non-linear oscillator in two dimensions (D = 2) described by the equation

$$\begin{array}{rcl} \frac{dz}{dt} & = & \left(\varrho + \mathrm{i}\,\omega - |z|^2\right)z \\ \Rightarrow & \frac{dr}{dt} & = & \left(\varrho - r^2\right)r, & \frac{d\theta}{dt} = \omega, & \left(r^2 = |z|^2\right) \end{array}$$

The second equation describes a one-dimensional system—it is in fact linear:

$$\frac{d}{dt}(\frac{1}{r^2}) = 2 - \varrho(\frac{1}{r^2})$$

Lev Landau (1908-1968)

John Stuart (1929–2023)

A non-linear oscillator in two dimensions (D=2) described by the equation

$$\begin{array}{rcl} \frac{dz}{dt} & = & \left(\varrho + \mathrm{i}\,\omega - |z|^2\right)z \\ \Rightarrow & \frac{dr}{dt} & = & \left(\varrho - r^2\right)r, & \frac{d\theta}{dt} = \omega, & \left(r^2 = |z|^2\right) \end{array}$$

The second equation describes a one-dimensional system—it is in fact linear:

$$\frac{d}{dt}(\frac{1}{r^2}) = 2 - \varrho(\frac{1}{r^2})$$

This is Landau's version of the equation—related to the Landau theory of phase transition.

Lev Landau (1908-1968)

John Stuart (1929–2023)

A non-linear oscillator in two dimensions (D = 2) described by the equation

$$\begin{array}{rcl} \frac{dz}{dt} & = & \left(\varrho + \mathrm{i}\,\omega - |z|^2\right)z \\ \Rightarrow & \frac{dr}{dt} & = & \left(\varrho - r^2\right)r, & \frac{d\theta}{dt} = \omega, & \left(r^2 = |z|^2\right) \end{array}$$

The second equation describes a one-dimensional system—it is in fact linear:

$$\frac{d}{dt}(\frac{1}{r^2}) = 2 - \varrho(\frac{1}{r^2})$$

This is Landau's version of the equation—related to the Landau theory of phase transition. The solution is $r=\sqrt{\frac{\varrho}{1-\left(1-\frac{\varrho}{r_{c}^{2}}\right)e^{-2\varrho t}}}$, for $\varrho>0$.

Lev Landau (1908-1968)

John Stuart (1929–2023)

The equation for r, or its one-dimensional analogue

$$\frac{dx}{dt} = (\varrho - x^2)x$$

exhibit different behaviour for

Landau potential

Eberhard Hopf (1902–1983)

The equation for r, or its one-dimensional analogue

$$\frac{dx}{dt} = (\varrho - x^2)x$$

exhibit different behaviour for

• $\varrho \le 0$: In this case, the origin $x_* = 0$ is an attractive fixed point.

Landau potential

Eberhard Hopf (1902–1983)

The equation for r, or its one-dimensional analogue

$$\frac{dx}{dt} = (\varrho - x^2)x$$

exhibit different behaviour for

- $\varrho \le 0$: In this case, the origin $x_* = 0$ is an attractive fixed point.
- ▶ $\varrho > 0$: Now the origin is a repulsive fixed point, while $x_* = \pm \sqrt{\varrho}$ are attractive fixed point.

Landau potential

Eberhard Hopf (1902–1983)

The equation for r, or its one-dimensional analogue

$$\frac{dx}{dt} = (\varrho - x^2)x$$

exhibit different behaviour for

- $\varrho \le 0$: In this case, the origin $x_* = 0$ is an attractive fixed point.
- ▶ $\varrho > 0$: Now the origin is a repulsive fixed point, while $x_* = \pm \sqrt{\varrho}$ are attractive fixed point.

As the parameter ϱ changes sign from negative to positive, the nature of dynamics changes.

Landau potential

Eberhard Hopf (1902–1983)

The equation for r, or its one-dimensional analogue

$$\frac{dx}{dt} = (\varrho - x^2)x$$

exhibit different behaviour for

- $\varrho \le 0$: In this case, the origin $x_* = 0$ is an attractive fixed point.
- ▶ $\varrho > 0$: Now the origin is a repulsive fixed point, while $x_* = \pm \sqrt{\varrho}$ are attractive fixed point.

As the parameter ϱ changes sign from negative to positive, the nature of dynamics changes. This is a simple example of bifurcation. More interesting is the two-dimensional case.

Landau potential

Eberhard Hopf (1902–1983)

The Stuart-Landau equations in components are

$$\begin{pmatrix} dx/dt \\ dy/dt \end{pmatrix} = \begin{pmatrix} \varrho - r^2 & -\omega \\ \omega & \varrho - r^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

in which we know the solution for r(t).

The Stuart-Landau equations in components are

$$\begin{pmatrix} dx/dt \\ dy/dt \end{pmatrix} = \begin{pmatrix} \varrho - r^2 & -\omega \\ \omega & \varrho - r^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

in which we know the solution for r(t).

• $\varrho \le 0$: In this case, the origin $x_* = 0$ is an attractive fixed point.

The Stuart-Landau equations in components are

$$\begin{pmatrix} dx/dt \\ dy/dt \end{pmatrix} = \begin{pmatrix} \varrho - r^2 & -\omega \\ \omega & \varrho - r^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

in which we know the solution for r(t).

- $\varrho \le 0$: In this case, the origin $x_* = 0$ is an attractive fixed point.
- ▶ $\varrho > 0$: Now the origin is a repulsive fixed point, while the circle $r_*^2 = \varrho$ is a limit cycle attractor. Asymptotically the motion is circular on the limit cycle.

The Stuart-Landau equations in components are

$$\begin{pmatrix} dx/dt \\ dy/dt \end{pmatrix} = \begin{pmatrix} \varrho - r^2 & -\omega \\ \omega & \varrho - r^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

in which we know the solution for r(t).

- $\varrho \le 0$: In this case, the origin $x_* = 0$ is an attractive fixed point.
- ▶ $\varrho > 0$: Now the origin is a repulsive fixed point, while the circle $r_*^2 = \varrho$ is a limit cycle attractor. Asymptotically the motion is circular on the limit cycle.

This is an example of (supercritical) Hopf bifurcation in which a pair of eigenvalues change sign from negative to positive values.

Generalisation

How can we generalise (why?) the two-dimensional system?

$$\frac{dz}{dt} = (\underbrace{\varrho + i \omega}_{=u} - |z|^2) z, \qquad \dot{x} = -\omega y + (\varrho - r^2) x \\ \dot{y} = \omega x + (\varrho - r^2) y \qquad \dot{\theta} = \omega$$

Generalisation

How can we generalise (why?) the two-dimensional system?

$$\frac{dz}{dt} = \underbrace{(\varrho + i\omega - |z|^2)}_{=\mu} z, \qquad \dot{x} = -\omega y + (\varrho - r^2) x \\ \dot{y} = \omega x + (\varrho - r^2) y \qquad \dot{\theta} = \omega$$

Replace complex z, $\mu \to \mathfrak{q} = (q_0, \vec{q}) = |\mathfrak{q}|\mathfrak{U}$, $\mathfrak{m} = (\varrho, \vec{\omega})$ quaternions \mathbb{H} (beware non-commutativity)

Generalisation

How can we generalise (why?) the two-dimensional system?

$$\frac{dz}{dt} = \underbrace{(\varrho + i\omega - |z|^2)}_{=\mu} z, \qquad \dot{x} = -\omega y + (\varrho - r^2) x \\ \dot{y} = \omega x + (\varrho - r^2) y \qquad \dot{\theta} = \omega$$

Replace complex z, $\mu \to \mathfrak{q} = (q_0, \vec{q}) = |\mathfrak{q}|\mathfrak{U}$, $\mathfrak{m} = (\varrho, \vec{\omega})$ quaternions \mathbb{H} (beware non-commutativity)

$$\frac{d\mathfrak{q}}{dt} = (\mathfrak{m} - |\mathfrak{q}|^2) \, \mathfrak{q}, \qquad \dot{q}_0 = -\vec{\omega} \cdot \mathbf{q} + (\varrho - |\mathfrak{q}|^2) q_0 \\ \dot{\vec{q}} = \vec{\omega} \times \vec{q} + \vec{\omega} q_0 + (\varrho - |\mathfrak{q}|^2) \vec{q} \, , \qquad \dot{|\mathfrak{q}|} = (\varrho - |\mathfrak{q}|^2) |\mathfrak{q}| \\ \mathfrak{U}^\dagger \dot{\mathfrak{U}} = \mathfrak{m} - \varrho \sim \vec{\omega}$$

► The equations are covariant under rotation $z \rightarrow e^{i\alpha}z$ resp. $q \rightarrow qt$.

- ► The equations are covariant under rotation $z \rightarrow e^{i\alpha}z$ resp. $q \rightarrow q\tau$.
- ▶ Rotational symmetry can be broken if we modify the Eq. by $z \to \overline{z}$, Re(z), Im(z), · · · · $q \to \overline{q}$, $i\overline{q}i$, · · · respectively on either LHS/RHS.

- ► The equations are covariant under rotation $z \rightarrow e^{i\alpha}z$ resp. $q \rightarrow q\tau$.
- ▶ Rotational symmetry can be broken if we modify the Eq. by $z \to \overline{z}$, Re(z), Im(z), · · · · $q \to \overline{q}$, $i\overline{q}i$, · · · respectively on either LHS/RHS.
- ▶ Only one angle of rotation in D = 2: the rotation group is SO(2).

- ► The equations are covariant under rotation $z \rightarrow e^{i\alpha}z$ resp. $q \rightarrow q\tau$.
- ▶ Rotational symmetry can be broken if we modify the Eq. by $z \to \overline{z}$, Re(z), Im(z), · · · $q \to \overline{q}$, $i\overline{q}i$, · · · respectively on either LHS/RHS.
- ▶ Only one angle of rotation in D = 2: the rotation group is SO(2).
- ▶ Only one scalar ϱ related to $|z|^2$, $|\mathfrak{q}|^2$,

- ► The equations are covariant under rotation $z \rightarrow e^{i\alpha}z$ resp. $q \rightarrow q\tau$.
- ▶ Rotational symmetry can be broken if we modify the Eq. by $z \to \overline{z}$, Re(z), Im(z), · · · $q \to \overline{q}$, $i\overline{q}i$, · · · respectively on either LHS/RHS.
- ▶ Only one angle of rotation in D = 2: the rotation group is SO(2).
- ▶ Only one scalar ϱ related to $|z|^2$, $|\mathfrak{q}|^2$,
- ▶ but one imaginary unit $\sqrt{-1} = i$ (complex) to three (i, j, k) (quaternions).

Let us go to *D* dimensions.

Let us go to *D* dimensions.

The $\frac{1}{2}D(D-1)$ symmetries of the rotation group SO(D) can be broken entirely or partially in many different ways.

Let us go to *D* dimensions.

The $\frac{1}{2}D(D-1)$ symmetries of the rotation group SO(D) can be broken entirely or partially in many different ways.

The exercise is facilitated by the use of Clifford's geometric algebra.

Clifford algebra and imaginary units

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products.

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$
 or, $\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_i = 2\delta_{ij}$

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$
 or, $\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_i = 2\delta_{ij}$

Clifford's geometric product is defined as

$$\mathbf{e}_{i}\mathbf{e}_{j} = \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} + \mathbf{e}_{j}\mathbf{e}_{i}}_{\text{symmetric}}) + \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} - \mathbf{e}_{j}\mathbf{e}_{i}}_{\text{anti-symmetric}})$$

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$
 or, $\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_i = 2\delta_{ij}$

Clifford's geometric product is defined as

$$\mathbf{e}_{i}\mathbf{e}_{j} = \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} + \mathbf{e}_{j}\mathbf{e}_{i}}) + \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} - \mathbf{e}_{j}\mathbf{e}_{i}}) \equiv \underbrace{\delta_{ij}}_{\text{bivector}} + \underbrace{\mathbf{e}_{i} \wedge \mathbf{e}_{j}}_{\text{bivector}}$$

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \cdots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$
 or, $\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_i = 2\delta_{ij}$

Clifford's geometric product is defined as

$$\mathbf{e}_{i}\mathbf{e}_{j} = \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} + \mathbf{e}_{j}\mathbf{e}_{i}}_{\text{symmetric}}) + \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} - \mathbf{e}_{j}\mathbf{e}_{i}}_{\text{anti-symmetric}}) \equiv \underbrace{\delta_{ij}}_{\text{scalar}} + \underbrace{\mathbf{e}_{i} \wedge \mathbf{e}_{j}}_{\text{bivector}}$$

Consequently for $i \neq j$, $(\mathbf{e}_i \mathbf{e}_j)^2 = \mathbf{e}_i \mathbf{e}_j \mathbf{e}_i \mathbf{e}_j = -(\mathbf{e}_i)^2 (\mathbf{e}_j)^2 = -1$. are the $\frac{1}{2}D(D-1)$ imaginary units $\sqrt{-1}$.

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \cdots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$
 or, $\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_i = 2\delta_{ij}$

Clifford's geometric product is defined as

$$\mathbf{e}_{i}\mathbf{e}_{j} = \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} + \mathbf{e}_{j}\mathbf{e}_{i}}_{\text{symmetric}}) + \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} - \mathbf{e}_{j}\mathbf{e}_{i}}_{\text{anti-symmetric}}) \equiv \underbrace{\delta_{ij}}_{\text{scalar}} + \underbrace{\mathbf{e}_{i} \wedge \mathbf{e}_{j}}_{\text{bivector}}$$

Consequently for $i \neq j$, $(\mathbf{e}_i \mathbf{e}_j)^2 = \mathbf{e}_i \mathbf{e}_j \mathbf{e}_i \mathbf{e}_j = -(\mathbf{e}_i)^2 (\mathbf{e}_j)^2 = -1$. are the $\frac{1}{2}D(D-1)$ imaginary units $\sqrt{-1}$. These are also related to rotation & reflection symmetry O(D) of \mathbb{R}^D .

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$
 or, $\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_i = 2\delta_{ij}$

Clifford's geometric product is defined as

$$\mathbf{e}_{i}\mathbf{e}_{j} = \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} + \mathbf{e}_{j}\mathbf{e}_{i}}) + \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} - \mathbf{e}_{j}\mathbf{e}_{i}}) \equiv \underbrace{\delta_{ij}}_{\text{symmetric}} + \underbrace{\mathbf{e}_{i} \wedge \mathbf{e}_{j}}_{\text{bivector}}$$

Consequently for $i \neq j$, $(\mathbf{e}_i \mathbf{e}_j)^2 = \mathbf{e}_i \mathbf{e}_j \mathbf{e}_i \mathbf{e}_j = -(\mathbf{e}_i)^2 (\mathbf{e}_j)^2 = -1$. are the $\frac{1}{2}D(D-1)$ imaginary units $\sqrt{-1}$. These are also related to rotation & reflection symmetry O(D) of \mathbb{R}^D .

The normed division algebras \mathbb{R} , \mathbb{C} and \mathbb{H} are special cases of Clifford (sub-)algebra, but the octonions \mathbb{O} are not.

The Clifford / geometric algebra of a D-dimensional Euclidean space \mathbb{R}^D (with the standard inner product) concerns vectors and **all** their (geometric) products. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_D\}$ be an orthonormal basis in \mathbb{R}^D :

$$\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$$
 or, $\mathbf{e}_i \cdot \mathbf{e}_j + \mathbf{e}_j \cdot \mathbf{e}_i = 2\delta_{ij}$

Clifford's geometric product is defined as

$$\mathbf{e}_{i}\mathbf{e}_{j} = \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} + \mathbf{e}_{j}\mathbf{e}_{i}}) + \frac{1}{2}(\underbrace{\mathbf{e}_{i}\mathbf{e}_{j} - \mathbf{e}_{j}\mathbf{e}_{i}}) \equiv \underbrace{\delta_{ij}}_{\text{symmetric}} + \underbrace{\mathbf{e}_{i} \wedge \mathbf{e}_{j}}_{\text{bivector}}$$

Consequently for $i \neq j$, $(\mathbf{e}_i \mathbf{e}_j)^2 = \mathbf{e}_i \mathbf{e}_j \mathbf{e}_i \mathbf{e}_j = -(\mathbf{e}_i)^2 (\mathbf{e}_j)^2 = -1$. are the $\frac{1}{2}D(D-1)$ imaginary units $\sqrt{-1}$. These are also related to rotation & reflection symmetry O(D) of \mathbb{R}^D .

The normed division algebras \mathbb{R} , \mathbb{C} and \mathbb{H} are special cases of Clifford (sub-)algebra, but the octonions \mathbb{O} are not.

(Spoiler alert: Quaternions do not really generalise to D=4, but to D=3.)

Our generalisation: the coordinate vector \mathbf{x} in \mathbb{R}^D evolves as

$$\frac{d}{dt}\mathbf{x} = (\varrho - |\mathbf{x}|^2)\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x}$$

Our generalisation: the coordinate vector \mathbf{x} in \mathbb{R}^D evolves as

$$\frac{d}{dt}\mathbf{x} = (\varrho - |\mathbf{x}|^2)\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x}$$

where $\mu = \sum \mu_{ij} \mathbf{e}_i \wedge \mathbf{e}_j$ is a bivector, which has $\frac{1}{2}D(D-1)$ components μ_{ij} corresponding to the parameters of rotation,

Our generalisation: the coordinate vector \mathbf{x} in \mathbb{R}^D evolves as

$$\frac{d}{dt}\mathbf{x} = (\varrho - |\mathbf{x}|^2)\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x}$$

where $\mu = \sum \mu_{ij} \mathbf{e}_i \wedge \mathbf{e}_j$ is a bivector, which has $\frac{1}{2}D(D-1)$ components μ_{ij} corresponding to the parameters of rotation, and $\mu \cdot \mathbf{x} = \frac{1}{2}(\mu \mathbf{x} - \mathbf{x}\mu)$ is the scalar product of a bivector and a vector, which is a vector.

Our generalisation: the coordinate vector \mathbf{x} in \mathbb{R}^D evolves as

$$\frac{d}{dt}\mathbf{x} = (\varrho - |\mathbf{x}|^2)\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x}$$

where $\mu = \sum \mu_{ij} \mathbf{e}_i \wedge \mathbf{e}_j$ is a bivector, which has $\frac{1}{2}D(D-1)$ components μ_{ij} corresponding to the parameters of rotation, and $\mu \cdot \mathbf{x} = \frac{1}{2}(\mu \mathbf{x} - \mathbf{x}\mu)$ is the scalar product of a bivector and a vector, which is a vector.

The bivector μ is equivalent to an anti-symmetric $D \times D$ matrix M.

Our generalisation: the coordinate vector \mathbf{x} in \mathbb{R}^D evolves as

$$\frac{d}{dt}\mathbf{x} = (\varrho - |\mathbf{x}|^2)\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x}$$

where $\mu = \sum \mu_{ij} \mathbf{e}_i \wedge \mathbf{e}_j$ is a bivector, which has $\frac{1}{2}D(D-1)$ components μ_{ij} corresponding to the parameters of rotation, and $\mu \cdot \mathbf{x} = \frac{1}{2}(\mu \mathbf{x} - \mathbf{x}\mu)$ is the scalar product of a bivector and a vector, which is a vector.

The bivector μ is equivalent to an anti-symmetric $D \times D$ matrix M. By an orthogonal transformation R in SO(D), it can be brought to a Jordan canonical form in which it has

$$N = \begin{bmatrix} \frac{D}{2} \end{bmatrix}$$
 numbers of 2 × 2 blocks of the form $\begin{pmatrix} 0 & -\omega_j \\ \omega_j & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathrm{i}\omega_j & 0 \\ 0 & -\mathrm{i}\omega_j \end{pmatrix}$
 $j = 1, \dots, N$.

Our generalisation: the coordinate vector \mathbf{x} in \mathbb{R}^D evolves as

$$\frac{d}{dt}\mathbf{x} = (\varrho - |\mathbf{x}|^2)\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x}$$

where $\mu = \sum \mu_{ij} \mathbf{e}_i \wedge \mathbf{e}_j$ is a bivector, which has $\frac{1}{2}D(D-1)$ components μ_{ij} corresponding to the parameters of rotation, and $\mu \cdot \mathbf{x} = \frac{1}{2}(\mu \mathbf{x} - \mathbf{x}\mu)$ is the scalar product of a bivector and a vector, which is a vector.

The bivector μ is equivalent to an anti-symmetric $D \times D$ matrix M. By an orthogonal transformation R in SO(D), it can be brought to a Jordan canonical form in which it has

$$N = \begin{bmatrix} \frac{D}{2} \end{bmatrix}$$
 numbers of 2 × 2 blocks of the form $\begin{pmatrix} 0 & -\omega_j \\ \omega_j & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathrm{i}\omega_j & 0 \\ 0 & -\mathrm{i}\omega_j \end{pmatrix}$

 $j = 1, \dots, N$. and an additional zero eigenvalue if D = odd.

Our generalisation: the coordinate vector \mathbf{x} in \mathbb{R}^D evolves as

$$\frac{d}{dt}\mathbf{x} = (\varrho - |\mathbf{x}|^2)\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x}$$

where $\mu = \sum \mu_{ij} \mathbf{e}_i \wedge \mathbf{e}_j$ is a bivector, which has $\frac{1}{2}D(D-1)$ components μ_{ij} corresponding to the parameters of rotation, and $\mu \cdot \mathbf{x} = \frac{1}{2}(\mu \mathbf{x} - \mathbf{x}\mu)$ is the scalar product of a bivector and a vector, which is a vector.

The bivector μ is equivalent to an anti-symmetric $D \times D$ matrix M. By an orthogonal transformation R in SO(D), it can be brought to a Jordan canonical form in which it has

$$N = \left\lfloor \frac{D}{2} \right\rfloor$$
 numbers of 2 × 2 blocks of the form $\begin{pmatrix} 0 & -\omega_j \\ \omega_j & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathrm{i}\omega_j & 0 \\ 0 & -\mathrm{i}\omega_j \end{pmatrix}$

 $j = 1, \dots, N$. and an additional zero eigenvalue if D = odd.

Multiply by R from the left and call $R \mathbf{x} = \mathbf{y}$.

The generalised SL eqn multiplied by R.

$$\frac{d}{dt} \mathbf{R} \mathbf{x} = (\varrho - |\mathbf{R} \mathbf{x}|^2) \mathbf{R} \mathbf{x} + \mathbf{R} \boldsymbol{\mu} \mathbf{R}^T \cdot \mathbf{R} \mathbf{x}$$

where $\mu = \sum \mu_{ij} \mathbf{e}_i \wedge \mathbf{e}_j$ is a bivector, which has $\frac{1}{2}D(D-1)$ components μ_{ij} corresponding to the parameters of rotation, and $\mu \cdot \mathbf{x} = \frac{1}{2}(\mu \mathbf{x} - \mathbf{x}\mu)$ is the scalar product of a bivector and a vector, which is a vector.

The bivector μ is equivalent to an anti-symmetric $D \times D$ matrix M. By an orthogonal transformation R in SO(D), it can be brought to a Jordan canonical form in which it has

$$N = \left\lfloor \frac{D}{2} \right\rfloor$$
 numbers of 2 × 2 blocks of the form $\begin{pmatrix} 0 & -\omega_j \\ \omega_j & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathrm{i}\omega_j & 0 \\ 0 & -\mathrm{i}\omega_j \end{pmatrix}$

 $j = 1, \dots, N$. and an additional zero eigenvalue if D = odd.

Multiply by R from the left and call R x = y.

$$\frac{d}{dt}\mathbf{y} = (\varrho - |\mathbf{y}|^2)\mathbf{y} + \boldsymbol{\mu}_J \cdot \mathbf{y}$$

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r,$$

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r$$
, Integrating $r(t) = \sqrt{\frac{\varrho}{1 - Ce^{-2\varrho t}}}$

where
$$C = \left(1 - \frac{\varrho}{r_0^2}\right)$$
 and $r_0 = r(0)$.

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r$$
, Integrating $r(t) = \sqrt{\frac{\varrho}{1 - Ce^{-2\varrho t}}} \xrightarrow{t \to \infty} \sqrt{\varrho}$

where $C = \left(1 - \frac{\varrho}{r_0^2}\right)$ and $r_0 = r(0)$. The system ends up on the sphere \mathbb{S}^{D-1} of radius ϱ (attractor).

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r$$
, Integrating $r(t) = \sqrt{\frac{\varrho}{1 - Ce^{-2\varrho t}}} \xrightarrow{t \to \infty} \sqrt{\varrho}$

where $C = \left(1 - \frac{\varrho}{r_0^2}\right)$ and $r_0 = r(0)$. The system ends up on the sphere \mathbb{S}^{D-1} of radius ϱ (attractor).

The eqns for (y_{2j-1}, y_{2j}) where $j = 1, 2, \dots, N$ (plus y_D for odd D), are 'decoupled' (asymptotically decoupled) from each other, because of the block-diagaonal form of M.

◆□ > ◆圖 > ◆ 量 > → 量 ● 釣 < ②</p>

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r$$
, Integrating $r(t) = \sqrt{\frac{\varrho}{1 - Ce^{-2\varrho t}}} \xrightarrow{t \to \infty} \sqrt{\varrho}$

where $C = \left(1 - \frac{\varrho}{r_0^2}\right)$ and $r_0 = r(0)$. The system ends up on the sphere \mathbb{S}^{D-1} of radius ϱ (attractor).

The eqns for (y_{2j-1}, y_{2j}) where $j=1,2,\cdots,N$ (plus y_D for odd D), are 'decoupled' (asymptotically decoupled) from each other, because of the block-diagonal form of \mathbb{M} . The dynamics of each (complexified) pair $z_j = y_{2j-1} + i y_{2j}$ is 'exactly' as in D=2.

◆ロ > ◆ 個 > ◆ 量 > ◆ 量 > ・ 量 ・ 夕 Q @

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r, \quad \text{Integrating } r(t) = \sqrt{\frac{\varrho}{1 - Ce^{-2\varrho t}}} \xrightarrow{t \to \infty} \sqrt{\varrho}$$

where $C = \left(1 - \frac{\varrho}{r_0^2}\right)$ and $r_0 = r(0)$. The system ends up on the sphere \mathbb{S}^{D-1} of radius ϱ (attractor).

The eqns for (y_{2j-1}, y_{2j}) where $j=1,2,\cdots,N$ (plus y_D for odd D), are 'decoupled' (asymptotically decoupled) from each other, because of the block-diagaonal form of \mathbb{M} . The dynamics of each (complexified) pair $z_j = y_{2j-1} + i y_{2j}$ is 'exactly' as in D=2.

$$\begin{pmatrix} \dot{y}_{2j-1} \\ \dot{y}_{2j} \end{pmatrix} = \begin{pmatrix} \varrho - r^2 & -\omega_j \\ \omega_j & \varrho - r^2 \end{pmatrix} \begin{pmatrix} y_{2j-1} \\ y_{2j} \end{pmatrix},$$

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r, \quad \text{Integrating } r(t) = \sqrt{\frac{\varrho}{1 - Ce^{-2\varrho t}}} \xrightarrow{t \to \infty} \sqrt{\varrho}$$

where $C = \left(1 - \frac{\varrho}{r_0^2}\right)$ and $r_0 = r(0)$. The system ends up on the sphere \mathbb{S}^{D-1} of radius ϱ (attractor).

The eqns for (y_{2j-1}, y_{2j}) where $j=1,2,\cdots,N$ (plus y_D for odd D), are 'decoupled' (asymptotically decoupled) from each other, because of the block-diagaonal form of \mathbb{M} . The dynamics of each (complexified) pair $z_j = y_{2j-1} + i y_{2j}$ is 'exactly' as in D=2.

$$\begin{pmatrix} \dot{y}_{2j-1} \\ \dot{y}_{2j} \end{pmatrix} = \begin{pmatrix} \varrho - r^2 & -\omega_j \\ \omega_j & \varrho - r^2 \end{pmatrix} \begin{pmatrix} y_{2j-1} \\ y_{2j} \end{pmatrix}, \qquad \dot{z}_j = (\varrho - r^2 - i\omega_j) z_j$$

The equation for $r = |\mathbf{x}| = |\mathbf{y}|$ is decoupled

$$\frac{dr}{dt} = (\varrho - r^2) r, \quad \text{Integrating } r(t) = \sqrt{\frac{\varrho}{1 - Ce^{-2\varrho t}}} \xrightarrow{t \to \infty} \sqrt{\varrho}$$

where $C = \left(1 - \frac{\varrho}{r_0^2}\right)$ and $r_0 = r(0)$. The system ends up on the sphere \mathbb{S}^{D-1} of radius ϱ (attractor).

The eqns for (y_{2j-1}, y_{2j}) where $j=1, 2, \cdots, N$ (plus y_D for odd D), are 'decoupled' (asymptotically decoupled) from each other, because of the block-diagaonal form of \mathbb{M} . The dynamics of each (complexified) pair $z_j = y_{2j-1} + i y_{2j}$ is 'exactly' as in D=2.

$$\begin{pmatrix} \dot{y}_{2j-1} \\ \dot{y}_{2j} \end{pmatrix} = \begin{pmatrix} \varrho - r^2 & -\omega_j \\ \omega_j & \varrho - r^2 \end{pmatrix} \begin{pmatrix} y_{2j-1} \\ y_{2j} \end{pmatrix}, \qquad \dot{z}_j = \begin{pmatrix} \varrho - r^2 - i\omega_j \end{pmatrix} z_j$$

$$z_j = \frac{a_j^{(\infty)} e^{i\omega_j t}}{\sqrt{1 - Ce^{-2\varrho t}}}$$

where $a_j^{(\infty)}$ is a constant that determines the radius of the asymptotic attracting circle on the z_j -plane.

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y,$$

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y$$
, Integrating $y_D(t) = \sqrt{\frac{a_D^{(\infty)}}{1 - Ce^{-2\varrho t}}}$

where $a_D^{(\infty)}$ is a constant.

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y$$
, Integrating $y_D(t) = \sqrt{\frac{a_D^{(\infty)}}{1 - Ce^{-2\varrho t}}}$

where
$$a_D^{(\infty)}$$
 is a constant. Moreover, $\sum_{j=1}^{N} (a_j^{(\infty)})^2 \underbrace{\left(+(a_D^{(\infty)})^2\right)}_{\text{for odd } D} = \varrho$.

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y$$
, Integrating $y_D(t) = \sqrt{\frac{a_D^{(\infty)}}{1 - Ce^{-2\varrho t}}}$

where
$$a_D^{(\infty)}$$
 is a constant. Moreover, $\sum_{j=1}^{N} (a_j^{(\infty)})^2 \underbrace{\left(+(a_D^{(\infty)})^2\right)}_{\text{for odd } D} = \varrho$.

These are determined from the initial condition

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y$$
, Integrating $y_D(t) = \sqrt{\frac{a_D^{(\infty)}}{1 - Ce^{-2\varrho t}}}$

where
$$a_D^{(\infty)}$$
 is a constant. Moreover, $\sum_{j=1}^{N} (a_j^{(\infty)})^2 \underbrace{\left(+(a_D^{(\infty)})^2\right)}_{\text{for odd } D} = \varrho$.

These are determined from the initial condition and are asymptotically conserved charges.

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y$$
, Integrating $y_D(t) = \sqrt{\frac{a_D^{(\infty)}}{1 - Ce^{-2\varrho t}}}$

where
$$a_D^{(\infty)}$$
 is a constant. Moreover, $\sum_{j=1}^N (a_j^{(\infty)})^2 \underbrace{\left(+(a_D^{(\infty)})^2\right)}_{\text{for odd }D} = \varrho$.

These are determined from the initial condition and are asymptotically conserved charges. The limit cycle is a torus

$$\mathbb{T}^{\textit{N}} = \mathbb{S}^1_1(\mathsf{a}_1^{(\infty)}) \times \mathbb{S}^1_2(\mathsf{a}_2^{(\infty)}) \times \dots \times \mathbb{S}^1_{\textit{N}}(\mathsf{a}_{\textit{N}}^{(\infty)})$$

where $N = \lfloor (D/2) \rfloor$.

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y$$
, Integrating $y_D(t) = \sqrt{\frac{a_D^{(\infty)}}{1 - Ce^{-2\varrho t}}}$

where
$$\mathbf{a}_D^{(\infty)}$$
 is a constant. Moreover, $\sum_{j=1}^N (\mathbf{a}_j^{(\infty)})^2 \underbrace{\left(+(\mathbf{a}_D^{(\infty)})^2\right)}_{\text{for odd }D} = \varrho$.

These are determined from the initial condition and are asymptotically conserved charges. The limit cycle is a torus

$$\mathbb{T}^{N} = \mathbb{S}^{1}_{1}(\mathsf{a}_{1}^{(\infty)}) \times \mathbb{S}^{1}_{2}(\mathsf{a}_{2}^{(\infty)}) \times \cdots \times \mathbb{S}^{1}_{N}(\mathsf{a}_{N}^{(\infty)})$$

where $N = \lfloor (D/2) \rfloor$. The basin of attraction is a cone obtained by joining the origin to the points on the torus by rays.

There is an additional unpaired normal mode coordinate y_D if D is odd. Its dynamics is similar to that seen in D = 1.

$$\dot{y}_D = (\varrho - r^2) y$$
, Integrating $y_D(t) = \sqrt{\frac{a_D^{(\infty)}}{1 - Ce^{-2\varrho t}}}$

where
$$\mathbf{a}_D^{(\infty)}$$
 is a constant. Moreover, $\sum_{j=1}^N (\mathbf{a}_j^{(\infty)})^2 \underbrace{\left(+\left(\mathbf{a}_D^{(\infty)}\right)^2\right)}_{\text{for odd }D} = \varrho$.

These are determined from the initial condition and are asymptotically conserved charges. The limit cycle is a torus

$$\mathbb{T}^{\textit{N}} = \mathbb{S}^1_1(\mathsf{a}_1^{(\infty)}) \times \mathbb{S}^1_2(\mathsf{a}_2^{(\infty)}) \times \dots \times \mathbb{S}^1_{\textit{N}}(\mathsf{a}_{\textit{N}}^{(\infty)})$$

where $N = \lfloor (D/2) \rfloor$. The basin of attraction is a cone obtained by joining the origin to the points on the torus by rays. In even D there is no preferred orientation of the cone, but in odd D its axis of symmetry is along the direction y_D corresponding to the zero eigenvalue of \mathbb{M} .

D=3

The limit cycle is the blue circle of radius

$$\sqrt{\varrho (1 - (\frac{\mathbf{x}_0}{|\mathbf{x}_0|} \cdot \hat{\mathbf{n}})^2)}$$
. (where \mathbf{x}_0 is the initial value).

D=3

The limit cycle is the blue circle of radius $\sqrt{\varrho \left(1-\left(\frac{\mathbf{x}_0}{|\mathbf{x}_0|}\cdot\hat{\mathbf{n}}\right)^2\right)}$. (where \mathbf{x}_0 is the initial value).

The basin of attraction is a cone with its axis of symmetry along y_3 .

D=3

The limit cycle is the blue circle of radius $\sqrt{\varrho \left(1-\left(\frac{x_0}{|x_0|}\cdot\hat{\mathbf{n}}\right)^2\right)}$. (where x_0 is the initial value).

The basin of attraction is a cone with its axis of symmetry along y_3 .

If the initial point is anywhere on the cone, it will end in the same limiting circle.

The limit cycle is the blue circle of radius $\sqrt{\varrho \left(1-\left(\frac{\mathbf{x}_0}{|\mathbf{x}_0|}\cdot\hat{\mathbf{n}}\right)^2\right)}$. (where \mathbf{x}_0 is the initial value).

The basin of attraction is a cone with its axis of symmetry along y_3 .

If the initial point is anywhere on the cone, it will end in the same limiting circle.

The opening angle of the cone is a parameter determined by the initial condition.

The limit cycle is the blue circle of radius $\sqrt{\varrho \left(1-\left(\frac{\mathbf{x}_0}{|\mathbf{x}_0|}\cdot\hat{\mathbf{n}}\right)^2\right)}$. (where \mathbf{x}_0 is the initial value).

The basin of attraction is a cone with its axis of symmetry along y_3 .

If the initial point is anywhere on the cone, it will end in the same limiting circle.

The opening angle of the cone is a parameter determined by the initial condition.

There is a one-parameter family of limit cycles.

$$D=3$$

The limit cycle is the blue circle of radius $\sqrt{\varrho \left(1-\left(\frac{\mathbf{x}_0}{|\mathbf{x}_0|}\cdot\hat{\mathbf{n}}\right)^2\right)}$. (where \mathbf{x}_0 is the initial value).

The basin of attraction is a cone with its axis of symmetry along y_3 .

If the initial point is anywhere on the cone, it will end in the same limiting circle.

The opening angle of the cone is a parameter determined by the initial condition.

There is a one-parameter family of limit cycles.

The limit cycle is inscribed in the projection of the great circle defined by the intersection of the initial position-velocity (two-)plane $(\mathbf{x} \wedge \dot{\mathbf{x}})$ and the attractor $\mathbb{S}^3: r^2 = \varrho$.

D = 4

The limit cycle is two-torus T^2 , which is a product of two circles on the $z_1 = y_1 + i y_2$ and $z_2 = y_3 + i y_4$ planes.

The limit cycle is two-torus T^2 , which is a product of two circles on the $z_1=y_1+\mathrm{i}\,y_2$ and $z_2=y_3+\mathrm{i}\,y_4$ planes. The nature of the trajectory depends on the ratio $\frac{\omega_1}{\omega_2}$ of the angular frequencies.

The limit cycle is two-torus T^2 , which is a product of two circles on the $z_1=y_1+\mathrm{i}\,y_2$ and $z_2=y_3+\mathrm{i}\,y_4$ planes. The nature of the trajectory depends on the ratio $\frac{\omega_1}{\omega_2}$ of the angular frequencies. For irrational $\frac{\omega_1}{\omega_2}$ the trajectory fill up the torus,

The limit cycle is two-torus T^2 , which is a product of two circles on the $z_1=y_1+\mathrm{i}\,y_2$ and $z_2=y_3+\mathrm{i}\,y_4$ planes. The nature of the trajectory depends on the ratio $\frac{\omega_1}{\omega_2}$ of the angular frequencies. For irrational $\frac{\omega_1}{\omega_2}$ the trajectory fill up the torus, while for rational values it is closed.

4D redux

A projection of the trajectory to any of z_i -planes is a circle.

4D redux

A projection of the trajectory to any of z_i -planes is a circle.

The 4D case may be truncated by imposing three relations among the six μ_{ij} to get a quaternionic SL oscillator.

The rotation group in D=4 is $SO(4) \sim SU(2) \times SU(2) \sim SO(3) \times SO(3)$.

The rotation group in D=4 is $SO(4)\sim SU(2)\times SU(2)\sim SO(3)\times SO(3)$. We can choose a diagonal SO(3) by imposing the relations $\mu_{i4}=\frac{1}{2}\sum_{jk}\epsilon_{ijk}\mu_{jk}\equiv\nu_i$, thus reducing the rotation symmetry to that of D=3.

The rotation group in D=4 is $SO(4) \sim SU(2) \times SU(2) \sim SO(3) \times SO(3)$. We can choose a diagonal SO(3) by imposing the relations $\mu_{i4} = \frac{1}{2} \sum_{jk} \epsilon_{ijk} \mu_{jk} \equiv \nu_i$, thus reducing the rotation symmetry to that of D=3. This is manifest in terms of x_1+ix_4, x_2-ix_3 .

The rotation group in D=4 is $SO(4)\sim SU(2)\times SU(2)\sim SO(3)\times SO(3)$. We can choose a diagonal SO(3) by imposing the relations $\mu_{i4}=\frac{1}{2}\sum_{jk}\epsilon_{ijk}\mu_{jk}\equiv\nu_i$, thus reducing the rotation symmetry to that of D=3. This is manifest in terms of $x_1+ix_4,\ x_2-ix_3$. The limit cycle is a great circle

$$x_i(t) \stackrel{t \to \infty}{\sim} x_i^{(0)} \cos(\nu t) + \frac{1}{\nu} \sum_{j \neq i} \mu_{ij} x_j^{(0)} \sin(\nu t), \quad \nu^2 = \sum_i \nu_i^2$$

The rotation group in D=4 is $SO(4)\sim SU(2)\times SU(2)\sim SO(3)\times SO(3)$. We can choose a diagonal SO(3) by imposing the relations $\mu_{i4}=\frac{1}{2}\sum_{jk}\epsilon_{ijk}\mu_{jk}\equiv\nu_i$, thus reducing the rotation symmetry to that of D=3. This is manifest in terms of $x_1+ix_4,\ x_2-ix_3$. The limit cycle is a great circle

$$x_i(t) \stackrel{t \to \infty}{\sim} x_i^{(0)} \cos(\nu t) + \frac{1}{\nu} \sum_{j \neq i} \mu_{ij} x_j^{(0)} \sin(\nu t), \quad \nu^2 = \sum_i \nu_i^2$$

The instantaneous position and velocity defines the bivector-plane $P_2(t) \sim \mathbf{x} \wedge \dot{\mathbf{x}}$ through the origin. The unit bivector evolves as

$$rac{d}{dt}\ell = rac{1}{|\mathbf{x}|\;|oldsymbol{\mu}\cdot\mathbf{x}|}\sum_{i,i,k} x_i(\mathbb{M}^2)_{jk} x_k\left(\mathbf{e}_i\wedge\mathbf{e}_j
ight)$$

The rotation group in D=4 is SO(4) \sim SU(2) \times SU(2) \sim SO(3) \times SO(3). We can choose a diagonal SO(3) by imposing the relations $\mu_{i4}=\frac{1}{2}\sum_{jk}\epsilon_{ijk}\mu_{jk}\equiv\nu_i$, thus reducing the rotation symmetry to that of D=3. This is manifest in terms of x_1+ix_4, x_2-ix_3 . The limit cycle is a great circle

$$x_i(t) \stackrel{t \to \infty}{\sim} x_i^{(0)} \cos(\nu t) + \frac{1}{\nu} \sum_{j \neq i} \mu_{ij} x_j^{(0)} \sin(\nu t), \quad \nu^2 = \sum_i \nu_i^2$$

The instantaneous position and velocity defines the bivector-plane $P_2(t) \sim \mathbf{x} \wedge \dot{\mathbf{x}}$ through the origin. The unit bivector evolves as

$$\frac{d}{dt}\ell = \frac{1}{|\mathbf{x}| |\boldsymbol{\mu} \cdot \mathbf{x}|} \sum_{i,i,k} x_i(\mathbb{M}^2)_{jk} x_k \left(\mathbf{e}_i \wedge \mathbf{e}_j \right)$$

After the reduction $\mathbb{M}_{ij}^2 = -\nu^2 \delta_{ij}$, therefore ℓ is a constant.

The rotation group in D=4 is $SO(4)\sim SU(2)\times SU(2)\sim SO(3)\times SO(3)$. We can choose a diagonal SO(3) by imposing the relations $\mu_{i4}=\frac{1}{2}\sum_{jk}\epsilon_{ijk}\mu_{jk}\equiv\nu_i$, thus reducing the rotation symmetry to that of D=3. This is manifest in terms of $x_1+ix_4,\ x_2-ix_3$. The limit cycle is a great circle

$$x_i(t) \stackrel{t \to \infty}{\sim} x_i^{(0)} \cos(\nu t) + \frac{1}{\nu} \sum_{j \neq i} \mu_{ij} x_j^{(0)} \sin(\nu t), \quad \nu^2 = \sum_i \nu_i^2$$

The instantaneous position and velocity defines the bivector-plane $P_2(t) \sim \mathbf{x} \wedge \dot{\mathbf{x}}$ through the origin. The unit bivector evolves as

$$\frac{d}{dt}\ell = \frac{1}{|\mathbf{x}| |\boldsymbol{\mu} \cdot \mathbf{x}|} \sum_{i,j,k} x_i (\mathbb{M}^2)_{jk} x_k (\mathbf{e}_i \wedge \mathbf{e}_j)$$

After the reduction $\mathbb{M}_{ij}^2 = -\nu^2 \delta_{ij}$, therefore ℓ is a constant.

Consistent reduction to a G_2 symmetric system possible in D=7.

Consider two coupled SL oscillators:

$$\dot{\mathbf{x}} = (\varrho_{x} - r_{x}^{2})\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x} - \epsilon_{1}(\mathbf{x} - \mathbf{y})$$

$$\dot{\mathbf{y}} = (\varrho_{y} - r_{y}^{2})\mathbf{y} + \boldsymbol{\nu} \cdot \mathbf{y} - \epsilon_{2}(\mathbf{y} - \mathbf{x})$$

Consider two coupled SL oscillators:

$$\dot{\mathbf{x}} = (\varrho_{x} - r_{x}^{2})\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x} - \epsilon_{1}(\mathbf{x} - \mathbf{y})$$

$$\dot{\mathbf{y}} = (\varrho_{y} - r_{y}^{2})\mathbf{y} + \boldsymbol{\nu} \cdot \mathbf{y} - \epsilon_{2}(\mathbf{y} - \mathbf{x})$$

These equations are covariant (all terms transform the same way) under rotation.

Consider two coupled SL oscillators:

$$\dot{\mathbf{x}} = (\varrho_{x} - r_{x}^{2})\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x} - \epsilon_{1}(\mathbf{x} - \mathbf{y})$$

$$\dot{\mathbf{y}} = (\varrho_{y} - r_{y}^{2})\mathbf{y} + \boldsymbol{\nu} \cdot \mathbf{y} - \epsilon_{2}(\mathbf{y} - \mathbf{x})$$

These equations are covariant (all terms transform the same way) under rotation. There are other forms of coupling that breaks symmetry, entirely or partially. e.g., $\sim (\bar{\mathbf{x}} - \bar{\mathbf{y}})$ or $(x_1 - y_1)$: we'll not consider these today.

Consider two coupled SL oscillators:

$$\dot{\mathbf{x}} = (\varrho_{x} - r_{x}^{2})\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x} - \epsilon_{1}(\mathbf{x} - \mathbf{y})$$

$$\dot{\mathbf{y}} = (\varrho_{y} - r_{y}^{2})\mathbf{y} + \boldsymbol{\nu} \cdot \mathbf{y} - \epsilon_{2}(\mathbf{y} - \mathbf{x})$$

These equations are covariant (all terms transform the same way) under rotation. There are other forms of coupling that breaks symmetry, entirely or partially. e.g., $\sim (\bar{\mathbf{x}} - \bar{\mathbf{y}})$ or $(x_1 - y_1)$: we'll not consider these today.

Taking scalar product with x, y, we get the evolution of the magnitudes and the relative angle

$$\dot{r}_{x} = (\varrho_{x} - r_{x}^{2})r_{x} - \epsilon_{1}(r_{x} - r_{y}\cos\alpha)
\dot{r}_{y} = (\varrho_{y} - r_{y}^{2})r_{y} - \epsilon_{2}(r_{y} - r_{x}\cos\alpha)
\frac{d}{dt}\cos\alpha = \sum_{ij} (\mathbb{N}_{ij} - \mathbb{M}_{ij})\frac{x_{i}}{r_{x}}\frac{y_{j}}{r_{y}} + \left(\epsilon_{1}\frac{r_{y}}{r_{x}} + \epsilon_{2}\frac{r_{x}}{r_{y}}\right)\sin^{2}\alpha$$

Consider two coupled SL oscillators:

$$\dot{\mathbf{x}} = (\varrho_{x} - r_{x}^{2})\mathbf{x} + \boldsymbol{\mu} \cdot \mathbf{x} - \epsilon_{1}(\mathbf{x} - \mathbf{y})$$

$$\dot{\mathbf{y}} = (\varrho_{y} - r_{y}^{2})\mathbf{y} + \boldsymbol{\nu} \cdot \mathbf{y} - \epsilon_{2}(\mathbf{y} - \mathbf{x})$$

These equations are covariant (all terms transform the same way) under rotation. There are other forms of coupling that breaks symmetry, entirely or partially. e.g., $\sim (\bar{\mathbf{x}} - \bar{\mathbf{y}})$ or $(x_1 - y_1)$: we'll not consider these today.

Taking scalar product with x, y, we get the evolution of the magnitudes and the relative angle

$$\dot{r}_{x} = (\varrho_{x} - r_{x}^{2})r_{x} - \epsilon_{1}(r_{x} - r_{y}\cos\alpha)
\dot{r}_{y} = (\varrho_{y} - r_{y}^{2})r_{y} - \epsilon_{2}(r_{y} - r_{x}\cos\alpha)
\frac{d}{dt}\cos\alpha = \sum_{ij} (\mathbb{N}_{ij} - \mathbb{M}_{ij})\frac{x_{i}}{r_{x}}\frac{y_{j}}{r_{y}} + \left(\epsilon_{1}\frac{r_{y}}{r_{x}} + \epsilon_{2}\frac{r_{x}}{r_{y}}\right)\sin^{2}\alpha$$

A closed system of equations if $\mu = \nu$.

The fixed points and stability of these equations can be analysed.

The fixed points and stability of these equations can be analysed. For simplicity, in addition to $\mu = \nu$, let us also set $\varrho_x = \varrho_y = \varrho$ so that the individual oscillators are identical.

The fixed points and stability of these equations can be analysed.

For simplicity, in addition to $\mu = \nu$, let us also set $\varrho_x = \varrho_y = \varrho$ so that the individual oscillators are identical.

The asymptotic dynamics is described by the fixed point set

$$(r_{x*}, r_{y*}, \cos \alpha_*) = (\sqrt{\varrho}, \sqrt{\varrho}, 1)$$

The fixed points and stability of these equations can be analysed. For simplicity, in addition to $\mu = \nu$, let us also set $\varrho_x = \varrho_y = \varrho$ so that the individual oscillators are identical.

The asymptotic dynamics is described by the fixed point set

$$(r_{x*}, r_{y*}, \cos \alpha_*) = (\sqrt{\varrho}, \sqrt{\varrho}, 1)$$

The Lyapunov exponents are determined by the eigenvalues of the Jacobian at the fixed point:

$$\left\{ \text{ Eigenvalues of } J = \left[\left[\frac{\partial \dot{x_i}}{\partial x_j} \right] \right] \right\} = \left(-2\varrho, \, -(2\varrho + \epsilon_1 + \epsilon_2), \, -2(\epsilon_1 + \epsilon_2) \right)$$

The fixed points and stability of these equations can be analysed. For simplicity, in addition to $\mu = \nu$, let us also set $\varrho_x = \varrho_y = \varrho$ so that the individual oscillators are identical.

The asymptotic dynamics is described by the fixed point set

$$(r_{x*}, r_{y*}, \cos \alpha_*) = (\sqrt{\varrho}, \sqrt{\varrho}, 1)$$

The Lyapunov exponents are determined by the eigenvalues of the Jacobian at the fixed point:

$$\left\{ \text{ Eigenvalues of } J = \left[\left[\frac{\partial \dot{x_i}}{\partial x_j} \right] \right] \right\} = \left(-2\varrho, \, -(2\varrho + \epsilon_1 + \epsilon_2), \, -2(\epsilon_1 + \epsilon_2) \right)$$

are all negative, therefore, this fixed point set is stable.

The fixed points and stability of these equations can be analysed. For simplicity, in addition to $\mu = \nu$, let us also set $\varrho_x = \varrho_y = \varrho$ so that the individual oscillators are identical.

The asymptotic dynamics is described by the fixed point set

$$(r_{x*}, r_{y*}, \cos \alpha_*) = (\sqrt{\varrho}, \sqrt{\varrho}, 1)$$

The Lyapunov exponents are determined by the eigenvalues of the Jacobian at the fixed point:

$$\left\{ \text{ Eigenvalues of } J = \left[\left[\frac{\partial \dot{x_i}}{\partial x_j} \right] \right] \right\} = \left(-2\varrho, \, -(2\varrho + \epsilon_1 + \epsilon_2), \, -2(\epsilon_1 + \epsilon_2) \right)$$

are all negative, therefore, this fixed point set is stable.

Since $\alpha_* = 0$, the two oscillators are completely synchronized.

Two identical oscillators in synchronisation

Two identical oscillators in synchronisation

N coupled oscillators (with symmetry preserving couplings) with parameters $\mu_1, \mu_2, \cdots, \mu_N$ which can all be brought to the normal form by the same rotation (different 'eigenvalues', i.e., frequencies, but the same 'eigenvectors') can also be treated analytically to a large extent.

We can (periodically) modulate the parameters of a Stuart-Landau oscillator.

We can (periodically) modulate the parameters of a Stuart-Landau oscillator.

$$\frac{dz}{dt} = (\varrho f(t) + i\omega \alpha(t) - |z|^2)z$$

We can (periodically) modulate the parameters of a Stuart-Landau oscillator.

$$\frac{dz}{dt} = (\varrho f(t) + i\omega \alpha(t) - |z|^2)z$$

where

$$f(t) = \begin{cases} 1 + \varepsilon \sin(2\pi\Omega t) & \text{sinusoidal perturbation} \\ A \sin(2\pi\Omega t) & \text{sinusoidal modulation} \end{cases}$$

$$\alpha(t) = 1 \qquad \text{no modulation of frequency}$$

We can (periodically) modulate the parameters of a Stuart-Landau oscillator.

$$\frac{dz}{dt} = (\varrho f(t) + i\omega \alpha(t) - |z|^2)z$$

1 ...

where

$$f(t) = \begin{cases} 1 + \varepsilon \sin(2\pi\Omega t) & \text{sinusoidal perturbation} \\ A \sin(2\pi\Omega t) & \text{sinusoidal modulation} \end{cases}$$

$$\alpha(t)=1$$
 no modulation of frequency

We can (periodically) modulate the parameters of a Stuart-Landau oscillator.

$$\frac{dz}{dt} = (\varrho f(t) + i\omega \alpha(t) - |z|^2)z$$

where

$$f(t) = \begin{cases} 1 + \varepsilon \sin(2\pi\Omega t) & \text{sinusoidal perturbation} \\ A \sin(2\pi\Omega t) & \text{sinusoidal modulation} \end{cases}$$

$$\alpha(t) = 1 \qquad \text{no modulation of frequency}$$

Stroboscopic dynamics

Discretise time $t \in \mathbb{R} \to n \in \mathbb{Z}$

$$z_{n+1} = (1 + \mu - g(|z_n|))z_n$$

Stroboscopic dynamics

Discretise time $t \in \mathbb{R} \to n \in \mathbb{Z}$

$$z_{n+1} = (1 + \mu - g(|z_n|))z_n$$

Let us use the polar decomposition for the dynamical variable $z=re^{i\phi}$ and the parameter $\varrho e^{i\alpha}$

Stroboscopic dynamics

Discretise time $t \in \mathbb{R} \to n \in \mathbb{Z}$

$$z_{n+1} = (1 + \mu - g(|z_n|))z_n$$

Let us use the polar decomposition for the dynamical variable $z=re^{i\phi}$ and the parameter $\varrho e^{i\alpha}$ and propose the discrete dynamical equations

$$r_{n+1} = (\varrho - g(r_n)) r_n$$
 $(e^{i\phi})_{n+1} = e^{i\alpha} (e^{i\phi})_n$

where $g(\cdot)$ is a function, which was taken to be quadratic earlier.

Stroboscopic dynamics

Discretise time $t \in \mathbb{R} \to n \in \mathbb{Z}$

$$z_{n+1} = (1 + \mu - g(|z_n|))z_n$$

Let us use the polar decomposition for the dynamical variable $z=re^{i\phi}$ and the parameter $\varrho e^{i\alpha}$ and propose the discrete dynamical equations

$$r_{n+1} = (\varrho - g(r_n)) r_n$$
 $(e^{i\phi})_{n+1} = e^{i\alpha} (e^{i\phi})_n$

where $g(\cdot)$ is a function, which was taken to be quadratic earlier. Discrete dynamics is meaningful even for the real case, with the polar decomposition of $x \in \mathbb{R}$ as $x = |x| \operatorname{sign}(x)$:

$$|x_{n+1}| = (\varrho - g(|x_n|))|x_n|, \quad \operatorname{sign}(x_{n+1}) = \operatorname{sign}(\mu)\operatorname{sign}(x_n)$$

Stroboscopic dynamics

Discretise time $t \in \mathbb{R} \to n \in \mathbb{Z}$

$$z_{n+1} = (1 + \mu - g(|z_n|))z_n$$

Let us use the polar decomposition for the dynamical variable $z=re^{i\phi}$ and the parameter $\varrho e^{i\alpha}$ and propose the discrete dynamical equations

$$r_{n+1} = (\varrho - g(r_n)) r_n$$
 $(e^{i\phi})_{n+1} = e^{i\alpha} (e^{i\phi})_n$

where $g(\cdot)$ is a function, which was taken to be quadratic earlier. Discrete dynamics is meaningful even for the real case, with the polar decomposition of $x \in \mathbb{R}$ as $x = |x| \operatorname{sign}(x)$:

$$|x_{n+1}| = (\varrho - g(|x_n|))|x_n|, \quad \operatorname{sign}(x_{n+1}) = \operatorname{sign}(\mu)\operatorname{sign}(x_n)$$

This would make sense for $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} = |\mathbf{x}| \mathcal{U}$, where $|\mathcal{U}| = 1$, so \mathcal{U} is a unit element.

A *p*-adic dynamical variable $x \in \mathbb{Q}_p$ has a polar decomposition: $x = |x|_p U(x)$, with $U(x) \in \mathbb{Z}_p$, the *p*-adic units.

A *p*-adic dynamical variable $x \in \mathbb{Q}_p$ has a polar decomposition: $x = |x|_p U(x)$, with $U(x) \in \mathbb{Z}_p$, the *p*-adic units. Let us take $g(|x|_p) = |x|_p$ for simplicity.

A *p*-adic dynamical variable $x \in \mathbb{Q}_p$ has a polar decomposition: $x = |x|_p U(x)$, with $U(x) \in \mathbb{Z}_p$, the *p*-adic units. Let us take $g(|x|_p) = |x|_p$ for simplicity.

The proposed dynamics is described by (other variations possible):

$$|x_{n+1}|_{p} = |(\mu - g(|x_{n}|_{p}))x_{n}|$$

$$= |x_{n}|_{p} \times \max(|\mu|_{p}, |x_{n}|_{p})$$

$$U(x_{n+1}) = U(\mu) U(x_{n})$$

A *p*-adic dynamical variable $x \in \mathbb{Q}_p$ has a polar decomposition: $x = |x|_p U(x)$, with $U(x) \in \mathbb{Z}_p$, the *p*-adic units. Let us take $g(|x|_p) = |x|_p$ for simplicity. The proposed dynamics is described by (other variations possible):

ynamics is described by (other variations possible).

$$|x_{n+1}|_{p} = |(\mu - g(|x_{n}|_{p}))x_{n}|$$

$$= |x_{n}|_{p} \times \max(|\mu|_{p}, |x_{n}|_{p})$$

$$U(x_{n+1}) = U(\mu) U(x_{n})$$

The limit cycle is the unit circle $|x|_p = 1$.

A *p*-adic dynamical variable $x \in \mathbb{Q}_p$ has a polar decomposition: $x = |x|_p U(x)$, with $U(x) \in \mathbb{Z}_p$, the *p*-adic units. Let us take $g(|x|_p) = |x|_p$ for simplicity.

The proposed dynamics is described by (other variations possible):

$$|x_{n+1}|_{p} = |(\mu - g(|x_{n}|_{p}))x_{n}|$$

$$= |x_{n}|_{p} \times \max(|\mu|_{p}, |x_{n}|_{p})$$

$$U(x_{n+1}) = U(\mu) U(x_{n})$$

The limit cycle is the unit circle $|x|_p = 1$. Therefore, it reduces to dynamics on the finite fields $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (coefficients of the *p*-adic Laurent expansion)—this has been discussed earlier by [Nambu], [Meurice], [Freund-Olson],

A *p*-adic dynamical variable $x \in \mathbb{Q}_p$ has a polar decomposition: $x = |x|_p U(x)$, with $U(x) \in \mathbb{Z}_p$, the *p*-adic units. Let us take $g(|x|_p) = |x|_p$ for simplicity.

The proposed dynamics is described by (other variations possible):

$$|x_{n+1}|_{p} = |(\mu - g(|x_{n}|_{p}))x_{n}|$$

$$= |x_{n}|_{p} \times \max(|\mu|_{p}, |x_{n}|_{p})$$

$$U(x_{n+1}) = U(\mu) U(x_{n})$$

The limit cycle is the unit circle $|x|_p=1$. Therefore, it reduces to dynamics on the finite fields $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (coefficients of the p-adic Laurent expansion)—this has been discussed earlier by [Nambu], [Meurice], [Freund-Olson], \cdots . Additionally, [Meurice] considered 'p-adic time' using the fact that $\mathbb{Z}_p \subset \mathbb{Z}$ is dense.

A *p*-adic dynamical variable $x \in \mathbb{Q}_p$ has a polar decomposition: $x = |x|_p U(x)$, with $U(x) \in \mathbb{Z}_p$, the *p*-adic units. Let us take $g(|x|_p) = |x|_p$ for simplicity.

The proposed dynamics is described by (other variations possible):

$$|x_{n+1}|_{p} = |(\mu - g(|x_{n}|_{p}))x_{n}|$$

$$= |x_{n}|_{p} \times \max(|\mu|_{p}, |x_{n}|_{p})$$

$$U(x_{n+1}) = U(\mu) U(x_{n})$$

The limit cycle is the unit circle $|x|_p=1$. Therefore, it reduces to dynamics on the finite fields $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (coefficients of the p-adic Laurent expansion)—this has been discussed earlier by [Nambu], [Meurice], [Freund-Olson], \cdots . Additionally, [Meurice] considered 'p-adic time' using the fact that $\mathbb{Z}_p \subset \mathbb{Z}$ is dense.

The dynamical equations can easily be modified to include *nonlocality*.

A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.

- ► A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.
- ► The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits, extreme multistability, asymptotically conserved charges · · ·

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.
- ► The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits, extreme multistability, asymptotically conserved charges · · ·
- ▶ It reduces asymptotically to $\lfloor D/2 \rfloor$ SHO (+ a free particle).

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.
- ► The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits, extreme multistability, asymptotically conserved charges · · ·
- ▶ It reduces asymptotically to $\lfloor D/2 \rfloor$ SHO (+ a free particle).
- The oscillators can be coupled, preserving or breaking symmetry, partially or entirely,

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.
- ► The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits, extreme multistability, asymptotically conserved charges · · ·
- ▶ It reduces asymptotically to $\lfloor D/2 \rfloor$ SHO (+ a free particle).
- ► The oscillators can be coupled, preserving or breaking symmetry, partially or entirely, resulting in phase synchronization / drift; amplitude / oscillation death, etc.

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.
- ► The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits, extreme multistability, asymptotically conserved charges · · ·
- ▶ It reduces asymptotically to |D/2| SHO (+ a free particle).
- The oscillators can be coupled, preserving or breaking symmetry, partially or entirely, resulting in phase synchronization / drift; amplitude / oscillation death, etc.
- ▶ The parameters of the model can be systematically modulated.

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.
- ► The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits, extreme multistability, asymptotically conserved charges · · ·
- ▶ It reduces asymptotically to $\lfloor D/2 \rfloor$ SHO (+ a free particle).
- The oscillators can be coupled, preserving or breaking symmetry, partially or entirely, resulting in phase synchronization / drift; amplitude / oscillation death, etc.
- ▶ The parameters of the model can be systematically modulated.
- ▶ Discretised dynamics can be extended to *p*-adic nonlinear oscillators.

- A simple generalisation of the Stuart-Landau oscillator to any dimension (these need not be physical spatial dimensions) is exactly solvable.
- Our use of Clifford's geometric algebra for this is new, albeit minimal.
 However, this powerful formalism offers many potential applications.
- Higher dimensional dynamics can be understood by putting together "lego blocks" from lower dimensions.
- ► The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits, extreme multistability, asymptotically conserved charges · · ·
- ▶ It reduces asymptotically to |D/2| SHO (+ a free particle).
- The oscillators can be coupled, preserving or breaking symmetry, partially or entirely, resulting in phase synchronization / drift; amplitude / oscillation death, etc.
- ▶ The parameters of the model can be systematically modulated.
- ▶ Discretised dynamics can be extended to *p*-adic nonlinear oscillators.

THANK YOU

