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Motivation: oscillation beyond linear approximation

I Oscillations in natural and synthetic systems are ubiquitous

I Linear approximation near the extremum of a potential leads
to simple harmonic oscillation

I All systems are subjected to perturbations—stability analysis
is extremely important

I Close to the onset of oscillation (bifurcation), the
Stuart-Landau oscillator is a universal mathematical model

I It is related to the (complex) Landau-Ginzburg theory of
transition
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Stuart-Landau oscillator

A non-linear oscillator in two dimensions (D = 2)
described by the equation

dz

dt
= (%+ iω − |z |2) z

⇒ dr

dt
= (%− r2) r ,

dθ

dt
= ω, (r2 = |z |2)

The second equation describes a one-dimensional
system—it is in fact linear:

d
dt ( 1

r2 ) = 2− %( 1
r2 )

This is Landau’s version of the equation—related

to the Landau theory of phase transition. The

solution is r =

√
%

1−
(

1− %
r2

0

)
e−2%t

, for % > 0.

Lev Landau (1908–1968)

John Stuart (1929–2023)
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Bifurcation

The equation for r , or its one-dimensional analogue

dx

dt
= (%− x2) x

exhibit different behaviour for

I % ≤ 0: In this case, the origin x∗ = 0 is an
attractive fixed point.

I % > 0: Now the origin is a repulsive fixed
point, while x∗ = ±√% are attractive fixed
point.

As the parameter % changes sign from negative to

positive, the nature of dynamics changes. This is a

simple example of bifurcation. More interesting is

the two-dimensional case.

Landau potential

Eberhard Hopf

(1902–1983)
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Hopf bifurcation in D = 2

The Stuart-Landau equations in components are(
dx/dt
dy/dt

)
=

(
%− r2 −ω
ω %− r2

)(
x
y

)
in which we know the solution for r(t).

I % ≤ 0: In this case, the origin x∗ = 0 is an
attractive fixed point.

I % > 0: Now the origin is a repulsive fixed
point, while the circle r2

∗ = % is a limit cycle
attractor. Asymptotically the motion is
circular on the limit cycle.

This is an example of (supercritical) Hopf

bifurcation in which a pair of eigenvalues change

sign from negative to positive values.

4
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Generalisation

How can we generalise (why?) the two-dimensional system?

dz

dt
= (%+ iω︸ ︷︷ ︸

=µ

−|z |2) z ,
ẋ = −ωy + (%− r2)x
ẏ = ωx + (%− r2)y

,
ṙ = (%− r2)r

θ̇ = ω

Replace complex z , µ → q = (q0, ~q) = |q|U, m = (%, ~ω) quaternions H
(beware non-commutativity)

dq

dt
= (m− |q|2) q,

q̇0 = −~ω · q + (%− |q|2)q0

~̇q = ~ω × ~q + ~ωq0 + (%− |q|2)~q
,

˙|q| = (%− |q|2)|q|
U†U̇ = m− % ∼ ~ω
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Important Features:

I The equations are covariant under rotation z→e iαz
resp. q→qr.

I Rotational symmetry can be broken if we modify the Eq. by
z → z̄ ,Re(z), Im(z), · · ·
q→ q̄, iq̄i, · · · respectively

on either LHS/RHS.

I Only one angle of rotation in D = 2: the rotation group is
SO(2).

I Only one scalar % related to |z |2, |q|2,

I but one imaginary unit
√
−1 = i (complex) to

three (i, j, k) (quaternions).
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Imagine: It’s easy if you try!

Let us go to D dimensions.

The 1
2D(D − 1) symmetries of the

rotation group SO(D) can be broken
entirely or partially in many different
ways.

The exercise is facilitated by the use of
Clifford’s geometric algebra.
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Clifford algebra and imaginary units

The Clifford / geometric algebra of a D-dimensional Euclidean space RD

(with the standard inner product) concerns vectors and all their
(geometric) products.

Let {e1, · · · , eD} be an orthonormal basis in RD :

ei · ej = δij or, ei · ej + ej · ei = 2δij

Clifford’s geometric product is defined as

eiej =
1

2
( eiej + ejei︸ ︷︷ ︸

symmetric

) +
1

2
( eiej − ejei︸ ︷︷ ︸

anti-symmetric

) ≡ δij︸︷︷︸
scalar

+ ei ∧ ej︸ ︷︷ ︸
bivector

Consequently for i 6= j , (eiej)2 = eiejeiej = −(ei )2(ej)2 = −1. are the
1
2D(D − 1) imaginary units

√
−1. These are also related to rotation &

reflection symmetry O(D) of RD .
The normed division algebras R,C and H are special cases of Clifford (sub-)algebra,
but the octonions O are not.

(Spoiler alert: Quaternions do not really generalise to D = 4, but to D = 3.)
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ei · ej = δij or, ei · ej + ej · ei = 2δij

Clifford’s geometric product is defined as

eiej =
1

2
( eiej + ejei︸ ︷︷ ︸

symmetric

) +
1

2
( eiej − ejei︸ ︷︷ ︸

anti-symmetric

) ≡ δij︸︷︷︸
scalar

+ ei ∧ ej︸ ︷︷ ︸
bivector

Consequently for i 6= j , (eiej)2 = eiejeiej = −(ei )2(ej)2 = −1. are the
1
2D(D − 1) imaginary units

√
−1. These are also related to rotation &

reflection symmetry O(D) of RD .
The normed division algebras R,C and H are special cases of Clifford (sub-)algebra,
but the octonions O are not.

(Spoiler alert: Quaternions do not really generalise to D = 4, but to D = 3.)
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Generalised Stuart-Landau equation in RD

Our generalisation: the coordinate vector x in RD evolves as

d

dt
x = (%− |x|2) x + µ · x

where µ =
∑
µijei ∧ ej is a bivector, which has 1

2D(D − 1) components
µij corresponding to the parameters of rotation, and µ · x = 1

2 (µx− xµ)
is the scalar product of a bivector and a vector, which is a vector.

The bivector µ is equivalent to an anti-symmetric D × D matrix M. By
an orthogonal transformation R in SO(D), it can be brought to a Jordan
canonical form in which it has

N =

⌊
D

2

⌋
numbers of 2× 2 blocks of the form

( 0 −ωj

ωj 0

)
→
(
iωj 0
0 −iωj

)
j = 1, · · · ,N. and an additional zero eigenvalue if D = odd.

Multiply by R from the left and call R x = y.

d

dt
y = (%− |y|2) y + µJ · y
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Generalised Stuart-Landau equation in RD

The generalised SL eqn multiplied by R.

d

dt
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Diagonal blocks of the equations in RD

The equation for r = |x|= |y| is decoupled

dr

dt
=(%− r2) r ,

Integrating r(t)=

√
%

1− Ce−2%t

t→∞−→ √%

where C =
(

1− %
r2

0

)
and r0 = r(0). The system ends up on the sphere

SD−1 of radius % (attractor).

The eqns for (y2j−1, y2j) where j = 1, 2, · · · ,N (plus yD for odd D), are
‘decoupled’ (asymptotically decoupled) from each other, because of the
block-diagaonal form of M. The dynamics of each (complexified) pair
zj = y2j−1 + i y2j is ‘exactly’ as in D = 2.(

ẏ2j−1

ẏ2j

)
=

(
%− r2 −ωj

ωj %− r2

)(
y2j−1

y2j

)

,

żj = (%− r2 − iωj) zj

zj =
a

(∞)
j e iωj t

√
1−Ce−2%t

where a
(∞)
j is a constant that determines the radius of the asymptotic

attracting circle on the zj -plane.
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żj = (%− r2 − iωj) zj

zj =
a

(∞)
j e iωj t

√
1−Ce−2%t

where a
(∞)
j is a constant that determines the radius of the asymptotic

attracting circle on the zj -plane.

Debashis Ghoshal (JNU) Avatars of the S-L oscillator



Diagonal blocks of the equations in RD

The equation for r = |x|= |y| is decoupled

dr

dt
=(%− r2) r , Integrating r(t)=

√
%

1− Ce−2%t

t→∞−→ √%

where C =
(

1− %
r2

0

)
and r0 = r(0). The system ends up on the sphere

SD−1 of radius % (attractor).

The eqns for (y2j−1, y2j) where j = 1, 2, · · · ,N (plus yD for odd D), are
‘decoupled’ (asymptotically decoupled) from each other, because of the
block-diagaonal form of M. The dynamics of each (complexified) pair
zj = y2j−1 + i y2j is ‘exactly’ as in D = 2.

(
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Oddity in odd D

There is an additional unpaired normal mode coordinate yD if D is odd.
Its dynamics is similar to that seen in D = 1.

ẏD=(%− r2) y ,

Integrating yD(t) =

√
a

(∞)
D

1−Ce−2%t

where a
(∞)
D is a constant. Moreover,

N∑
j=1

(a
(∞)
j )2

(
+ (a

(∞)
D )2

)
︸ ︷︷ ︸

for odd D

= %.

These are determined from the initial condition and are asymptotically
conserved charges. The limit cycle is a torus

TN = S1
1(a

(∞)
1 )× S1

2(a
(∞)
2 )× · · · × S1

N(a
(∞)
N )

where N = b(D/2)c. The basin of attraction is a cone obtained by

joining the origin to the points on the torus by rays. In even D there is

no preferred orientation of the cone, but in odd D its axis of symmetry is

along the direction yD corresponding to the zero eigenvalue of M.
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D = 3

The limit cycle is the blue circle of radius√
% (1− ( x0

|x0| · n̂)2). (where x0 is the initial

value).

The basin of attraction is a cone with its
axis of symmetry along y3.

If the initial point is anywhere on the cone,
it will end in the same limiting circle.

The opening angle of the cone is a
parameter determined by the initial
condition.

There is a one-parameter family of limit
cycles.

The limit cycle is inscribed in the projection of the great circle defined by

the intersection of the initial position-velocity (two-)plane (x ∧ ẋ) and the

attractor S3 : r2 = %.
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D = 4

The limit cycle is two-torus T 2, which is a product of two circles on the

z1 = y1 + i y2 and z2 = y3 + i y4 planes.

The nature of the trajectory depends

on the ratio ω1
ω2

of the angular frequencies. For irrational ω1
ω2

the trajectory fill

up the torus, while for rational values it is closed.
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4D redux

A projection of the trajectory to any of

zj -planes is a circle.

The 4D case may be truncated by

imposing three relations among the six

µij to get a quaternionic SL oscillator.
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Quaternionic reduction

The rotation group in D = 4 is SO(4) ∼ SU(2)×SU(2) ∼ SO(3)×SO(3).

We can choose a diagonal SO(3) by imposing the relations
µi4 = 1

2

∑
jk εijkµjk ≡ νi , thus reducing the rotation symmetry to that of

D = 3. This is manifest in terms of x1 + i x4, x2 − i x3.
The limit cycle is a great circle

xi (t)
t→∞∼ x

(0)
i cos(νt) +

1

ν

∑
j 6=i

µijx
(0)
j sin(νt), ν2 =

∑
i

ν2
i

The instantaneous position and velocity defines the bivector-plane
P2(t) ∼ x ∧ ẋ through the origin. The unit bivector evolves as

d

dt
` =

1

|x| |µ · x|
∑
i,j,k

xi (M2)jkxk (ei ∧ ej)

After the reduction M2
ij = −ν2δij , therefore ` is a constant.

Consistent reduction to a G2 symmetric system possible in D = 7.
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Coupled oscillators: symmetry preserving coupling

Consider two coupled SL oscillators:

ẋ = (%x − r2
x )x + µ · x− ε1(x− y)

ẏ = (%y − r2
y )y + ν · y − ε2(y − x)

These equations are covariant (all terms transform the same way) under
rotation. There are other forms of coupling that breaks symmetry, entirely
or partially. e.g., ∼ (x̄− ȳ) or (x1 − y1): we’ll not consider these today.

Taking scalar product with x, y, we get the evolution of the magnitudes
and the relative angle

ṙx = (%x − r2
x )rx − ε1(rx − ry cosα)

ṙy = (%y − r2
y )ry − ε2(ry − rx cosα)

d

dt
cosα =

∑
ij

(Nij −Mij)
xi
rx

yj
ry

+

(
ε1
ry
rx

+ ε2
rx
ry

)
sin2 α

A closed system of equations if µ = ν.
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Identical, but asymmetrically coupled, oscillators

The fixed points and stability of these equations can be analysed.

For simplicity, in addition to µ = ν, let us also set %x = %y = % so that
the individual oscillators are identical.
The asymptotic dynamics is described by the fixed point set

(rx∗, ry∗, cosα∗) = (
√
%,
√
%, 1)

The Lyapunov exponents are determined by the eigenvalues of the
Jacobian at the fixed point:{

Eigenvalues of J =

s
∂ẋi
∂xj

{}
= (−2%, −(2%+ ε1 + ε2), −2(ε1 + ε2))

are all negative, therefore, this fixed point set is stable.

Since α∗ = 0, the two oscillators are completely synchronized.
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Two identical oscillators in synchronisation

N coupled oscillators (with symmetry preserving couplings) with parameters
µ1,µ2, · · · ,µN which can all be brought to the normal form by the same
rotation (different ‘eigenvalues’, i.e., frequencies, but the same ‘eigenvectors’)
can also be treated analytically to a large extent.
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Parametric Stuart-Landau oscillator

We can (periodically) modulate the parameters of
a Stuart-Landau oscillator.

dz

dt
= (%f (t) + iωα(t)− |z |2)z

where

f (t) =

{
1 + ε sin(2πΩt) sinusoidal perturbation

A sin(2πΩt) sinusoidal modulation

α(t)= 1 no modulation of frequency
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Stroboscopic dynamics

Discretise time t ∈ R→ n ∈ Z

zn+1 = (1 + µ− g(|zn|))zn

Let us use the polar decomposition for the dynamical variable
z = re iφ and the parameter %e iα and propose the discrete
dynamical equations

rn+1 = (%− g(rn)) rn (e iφ)n+1 = e iα (e iφ)n

where g(·) is a function, which was taken to be quadratic earlier.
Discrete dynamics is meaningful even for the real case, with the
polar decomposition of x ∈ R as x = |x | sign(x):

|xn+1| = (%− g(|xn|)) |xn|, sign(xn+1) = sign(µ) sign(xn)

This would make sense for x ∈ Rn with x = |x| U , where |U|= 1, so U is
a unit element.

Debashis Ghoshal (JNU) Avatars of the S-L oscillator



Stroboscopic dynamics

Discretise time t ∈ R→ n ∈ Z

zn+1 = (1 + µ− g(|zn|))zn

Let us use the polar decomposition for the dynamical variable
z = re iφ and the parameter %e iα

and propose the discrete
dynamical equations

rn+1 = (%− g(rn)) rn (e iφ)n+1 = e iα (e iφ)n

where g(·) is a function, which was taken to be quadratic earlier.
Discrete dynamics is meaningful even for the real case, with the
polar decomposition of x ∈ R as x = |x | sign(x):

|xn+1| = (%− g(|xn|)) |xn|, sign(xn+1) = sign(µ) sign(xn)

This would make sense for x ∈ Rn with x = |x| U , where |U|= 1, so U is
a unit element.

Debashis Ghoshal (JNU) Avatars of the S-L oscillator



Stroboscopic dynamics

Discretise time t ∈ R→ n ∈ Z

zn+1 = (1 + µ− g(|zn|))zn

Let us use the polar decomposition for the dynamical variable
z = re iφ and the parameter %e iα and propose the discrete
dynamical equations

rn+1 = (%− g(rn)) rn (e iφ)n+1 = e iα (e iφ)n

where g(·) is a function, which was taken to be quadratic earlier.

Discrete dynamics is meaningful even for the real case, with the
polar decomposition of x ∈ R as x = |x | sign(x):

|xn+1| = (%− g(|xn|)) |xn|, sign(xn+1) = sign(µ) sign(xn)

This would make sense for x ∈ Rn with x = |x| U , where |U|= 1, so U is
a unit element.

Debashis Ghoshal (JNU) Avatars of the S-L oscillator



Stroboscopic dynamics

Discretise time t ∈ R→ n ∈ Z

zn+1 = (1 + µ− g(|zn|))zn

Let us use the polar decomposition for the dynamical variable
z = re iφ and the parameter %e iα and propose the discrete
dynamical equations

rn+1 = (%− g(rn)) rn (e iφ)n+1 = e iα (e iφ)n

where g(·) is a function, which was taken to be quadratic earlier.
Discrete dynamics is meaningful even for the real case, with the
polar decomposition of x ∈ R as x = |x | sign(x):

|xn+1| = (%− g(|xn|)) |xn|, sign(xn+1) = sign(µ) sign(xn)

This would make sense for x ∈ Rn with x = |x| U , where |U|= 1, so U is
a unit element.

Debashis Ghoshal (JNU) Avatars of the S-L oscillator



Stroboscopic dynamics

Discretise time t ∈ R→ n ∈ Z

zn+1 = (1 + µ− g(|zn|))zn

Let us use the polar decomposition for the dynamical variable
z = re iφ and the parameter %e iα and propose the discrete
dynamical equations

rn+1 = (%− g(rn)) rn (e iφ)n+1 = e iα (e iφ)n

where g(·) is a function, which was taken to be quadratic earlier.
Discrete dynamics is meaningful even for the real case, with the
polar decomposition of x ∈ R as x = |x | sign(x):

|xn+1| = (%− g(|xn|)) |xn|, sign(xn+1) = sign(µ) sign(xn)

This would make sense for x ∈ Rn with x = |x| U , where |U|= 1, so U is
a unit element.

Debashis Ghoshal (JNU) Avatars of the S-L oscillator



Towards an ultrametric nonlinear oscillator

A p-adic dynamical variable x ∈ Qp has a polar decomposition:
x = |x |pU(x), with U(x) ∈ Zp, the p-adic units.

Let us take
g(|x |p) = |x |p for simplicity.
The proposed dynamics is described by (other variations possible):

|xn+1|p = |(µ− g(|xn|p)) xn|
= |xn|p ×max (|µ|p, |xn|p)

U(xn+1) = U(µ)U(xn)

The limit cycle is the unit circle |x |p= 1. Therefore, it reduces to
dynamics on the finite fields (Z/pZ)× (coefficients of the p-adic
Laurent expansion)—this has been discussed earlier by [Nambu],
[Meurice], [Freund-Olson], · · ·. Additionally, [Meurice] considered
‘p-adic time’ using the fact that Zp ⊂ Z is dense.
The dynamical equations can easily be modified to include nonlocality.
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Summary

I A simple generalisation of the Stuart-Landau oscillator to any dimension
(these need not be physical spatial dimensions) is exactly solvable.

I Our use of Clifford’s geometric algebra for this is new, albeit minimal.
However, this powerful formalism offers many potential applications.

I Higher dimensional dynamics can be understood by putting together
“lego blocks” from lower dimensions.

I The model is rich: it exhibits Hopf bifurcation, (quasi-)periodic orbits,
extreme multistability, asymptotically conserved charges · · ·

I It reduces asymptotically to bD/2c SHO (+ a free particle).

I The oscillators can be coupled, preserving or breaking symmetry, partially
or entirely,

resulting in phase synchronization / drift; amplitude /
oscillation death, etc.

I The parameters of the model can be systematically modulated.

I Discretised dynamics can be extended to p-adic nonlinear oscillators.

THANK YOU
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