Isoperiodic deformations of meromorphic differentials on Riemann surfaces and applications to Mathematical Physics

Vladimir Dragović

The University of Texas at Dallas/MISANU joint work with Vasilisa Shramchenko

International Conference NONLINEARITY, NONLOCALITY and ULTRAMETRICITY
Belgrade, 26–30. 05. 2025.

Dedicated to Prof. Branko Dragović and his 80th anniversary

Based on joint work with Vasilisa Shramchenko:

- VD, V. Shramchenko, Algebro-geometric solutions of the Schlesinger systems and the Poncelet-type polygons in higher dimensions, IMRN, (2018), 4229–4259.
- VD, V. Shramchenko, Algebro-geometric approach to an Okamoto transformation, the Painlevé VI and Schlesinger equations, Annales H. Poincaré, (2019), 1121-1148.
- VD, V. Shramchenko, Deformations of the Zolotarev polynomials and Painlevé VI equations, Lett. M. Phys. ('21).
- VD, V. Shramchenko, Isoharmonic deformations and constrained Schlesinger systems, arXiv: 2112:04110.
- VD, V. Shramchenko, Isoperiodic deformations of Toda lattices and curves, SU(N) Seiberg-Witten theory, and triangular Schlesinger systems, in preparation

Hyperelliptic curves

$$v^2=(u-u_1)\cdots(u-u_{2g+1}), \qquad u:(u,v)\in\mathcal{C}\mapsto u.$$

- ► Three bases in the space of holomorphic 1-forms:
 - $\phi, u\phi, \dots, u^{g-1}\phi$ with $\phi = \frac{du}{v} \Rightarrow \text{matrix of } a\text{-periods is } A$
 - $\omega = (\omega_1, \dots, \omega_g)^t$ are holomorphic normalized 1-forms: $\oint_{a_i} \omega_i = \delta_{ij} \Rightarrow \text{matrix of } b\text{-periods is } \boxed{\mathbb{B}}$
 - $\mathbf{v}_1, \ldots, \mathbf{v}_g$ with $\mathbf{v}_i(\mathbf{Q}_j) = \delta_{ij}$

Choice of the canonical basis of cycles

A differential Ω on hyperelliptic curves

$$\Omega(P) = \sum_{j=1}^g \Omega_{Q_j Q_j^*}(P) - 4\pi \mathrm{i} \, c_2^t \omega(P)$$

where
$$z_0=c_1+\mathbb{B}c_2$$
 and $\sum_{j=1}^g \mathcal{A}_{\infty}(Q_j)=z_0; \ c_1,c_2\in\mathbb{C}^g,$

$$\oint_{a_k} \Omega = -4\pi i c_{2k}$$
 $\oint_{b_k} \Omega = 4\pi i c_{1k}.$

Jacobi inversion problem

- ▶ Let $z_0 \in Jac(\mathcal{L}), \quad z_0 = c_1 + \mathbb{B}c_2, \text{ and } \sum_{j=1}^g \mathcal{A}_{\infty}(Q_j) = z_0.$
- ▶ Let $q_i = u(Q_i)$
- ▶ $P_k = (u = u_k, v = 0)$ ramification points.
- Then

$$\frac{\partial q_j}{\partial u_k} = -\frac{1}{4}\Omega(P_k)v_j(P_k)$$

 \triangleright where v_i are holomorphic differentials defined by

$$\overline{v_j(Q_s)=\delta_{js}}\,, \qquad j,s=1,\ldots,g$$

Genus one case and Painlevé-VI

- ▶ Modified \wp satisfies: $(\wp'(z))^2 = \wp(z) (\wp(z) 1) (\wp(z) x)$.
- $z_0 := 2w_1c_1 + 2w_2c_2.$
- ▶ Picard's solution to $P_{VI}(0,0,0,\frac{1}{2})$:

$$y_0(x)=\wp(z_0(x)).$$

Okamoto transformations \sim 1980

- a group of symmetries of $PVI(\alpha, \beta, \gamma, \delta)$.
 - ► Example: Okamoto transformation from $P_{VI}(0,0,0,\frac{1}{2})$ to $P_{VI}(\frac{1}{8},-\frac{1}{8},\frac{1}{8},\frac{3}{8})$:

 y_0 - Picard's solution of $P_{VI}(0,0,0,\frac{1}{2})$

y - Hitchin's solution of $P_{VI}(\frac{1}{8}, -\frac{1}{8}, \frac{1}{8}, \frac{3}{8})$

$$y(x) = y_0 + \frac{y_0(y_0 - 1)(y_0 - x)}{x(x - 1)y_0' - y_0(y_0 - 1)}.$$

Formula for y'_0 :

$$\boxed{\frac{dy_0}{dx} = -\frac{1}{4}\Omega(P_x)\frac{\omega(P_x)}{\omega(Q_0)}}$$

Genus one case and Painlevé-VI

▶ Differential of the third kind on the elliptic curve *C*:

$$\Omega(P) = \Omega_{Q_0,Q_0^*}(P) - 4\pi \mathrm{i} c_2 \omega(P).$$

- lacktriangledown $\omega(P)$ -holomorphic normalized differential on $\mathcal C$
- ▶ Ω has two simple poles at Q_0 et Q_0^* which project to y_0 , Picard's solution of $P_{VI}(0,0,0,\frac{1}{2})$.
- ▶ Ω has two simple zeros at P_0 et P_0^* which project to y, Hitchin's solution of $P_{VI}(\frac{1}{8}, -\frac{1}{8}, \frac{1}{8}, \frac{3}{8})$.

Our tools

- The fundamental bi-differential W(P,Q): defined by
 - W(P, Q) = W(Q, P)
 - $W(P,Q) = \frac{dz(P)dz(Q)}{(z(P)-z(Q))^2} + regular terms$
 - $\bullet \oint_{a_j} W(P,Q) = 0$

$$\Omega(P) = \sum_{j=1}^{g} \int_{Q_j^*}^{Q_j} W(P, \cdot) - 4\pi \mathrm{i} \, c_2^t \omega(P)$$

Rauch variational formulas

$$\partial_{u_k} W(P, Q) = \frac{1}{2} W(P, P_k) W(P_k, Q);$$

$$\partial_{u_k} \omega_j(P) = \frac{1}{2} \omega_j(P_{u_k}) W(P, P_{u_k});$$

$$\partial_{u_k} \mathbb{B}_{ij} = i\pi \omega_i(P_k) \omega_j(P_k).$$

Chebyshev polynomials

$$T_n(x), n = 0, 1, 2, \dots$$

$$T_n(x), n = 0, 1, 2, \dots$$
 $T_n(x) = \cos n\phi, \quad x = \cos \phi,$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$$

The Chebyshev polynomials are solutions to the Pell equation

$$T_n^2(x) - (x-1)(x+1)Q_{n-1}^2(x) = 1$$

• $2^{1-n}T_n$ is the monic polynomial of degree n which minimizes the uniform norm on the interval [-1,1]

Pafnuty Lvovich Chebyshev, 1821-1894

Zolotarev polynomials (d=2)

Problem: find monic polynomial of degree n minimizing the uniform norm over the union of two (or more) intervals. Denote the solution by \hat{P}_n and its norm by L_n .

The polynomial \hat{p}_n is the solution of the Pell equation on $[\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4]$

$$1 = \hat{\rho}_n(\lambda)^2 - \prod_{j=1}^4 (\lambda - \lambda_j) Q_{n-2}^2(\lambda),$$

if and only if:

- (i) $\hat{p}_n = \hat{P}_n / \pm L_n$
- (ii) the set $[\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4]$ is the maximal subset of **R** for which \hat{P}_n is the minimal polynomial in the above sense.

Zolotarev polynomials

The differential Ω on hyperelliptic curves

The curves

$$v^2 = \prod_{j=1}^{2g+1} (u - u_j)$$

- ullet Define $z_0=\hat{c}_1+\mathbb{B}\hat{c}_2$ with $\hat{c}_1,\hat{c}_2\in\mathbb{C}^g$ constant vectors
- Jacobi inversion:
 - Usual way (generic) $\sum_{j=1}^g \mathcal{A}_{\infty}(Q_j) = z_0$ and

$$\Omega(P) = \sum_{j=1}^g \Omega_{Q_jQ_j^*}(P) - 4\pi\mathrm{i}\,\hat{c}_2^t\omega(P)$$

• Unusual way (constrained) $\mathcal{A}_{\infty}(Q_0) = z_0$ and

$$\Omega(P) = \Omega_{Q_0Q_0^*}(P) - 4\pi \mathrm{i}\,\hat{c}_2^t\omega(P)$$

Here $\omega = (\omega_1, \dots, \omega_g)^t$ are holom. normalized differentials.

Jacobi inversion problem

Constrained Jacobi inversion problem

Usual and Constrained Jacobi inversion: billiard perspective

Billiard ordered games, see VD, M. Radnović, JMPA 2006

Generalized Chebyshev polynomials

Let

$$\mu^2 = x(x-1) \prod_{j=1}^{2g} (x-x_j)$$

The generalized Chebyshev polynomials satisfy the Pell equation

$$P_n^2(x) - \mu^2(x)Q_{n-g-1}^2(x) = 1$$
.

Given x_1, \ldots, x_{2g} , the existence of a solution P_n , Q_{n-g-1} to the Pell equation is not guaranteed.

Pell equations and points of a finite order

Let μ , P_n , Q_{n-g-1} be such that the Pell equation holds:

$$P_n^2(x) - \mu^2(x)Q_{n-g-1}^2(x) = 1$$

and $\mu^2 = x(x-1) \prod_{j=1}^{2g} (x-x_j)$ defines a hyperelliptic compact surface \mathcal{L}

Then the point ∞^+ is of order n that is: $n\mathcal{A}_{\infty^-}(\infty^+)\equiv 0$

Pell equations and points of a finite order - proof

- We have
 - $P_n^2(x) \mu^2(x)Q_{n-g-1}^2(x) = 1$
 - and $\mu^2 = x(x-1) \prod_{j=1}^{2g} (x-x_j)$.
- Define $s(P) := P_n(x) + \mu Q_{n-g-1}(x)$.
- Then $s(P^*) = \frac{1}{s(P)}$
- because

$$s(P^*)s(P) = (P_n - \mu Q_{n-g-1})(P_n + \mu Q_{n-g-1}) = 1.$$

- s(P) has a pole of order n at $P \sim \infty^+$ (where $\mu \sim x^2$)
- therefore s(P) has a zero of order n at $P \sim \infty^-$ ($\mu \sim -x^2$)
- Thus $n\mathcal{A}_{\infty^-}(\infty^+)\equiv 0$. \square
- The converse is also true: if ∞^+ is a point of order n, then there is a solution to the Pell equation for the μ in question.

Dynamics of Chebyshev polynomials

•
$$\mu^2 = x(x-1) \prod_{i=1}^{2g} (x-x_i)$$

- The Pell equation: $P_n^2(x) \mu^2(x)Q_{n-\sigma-1}^2(x) = 1$.
- Positions of x_2 , x_4 are determined by x_1 , x_3 and the Pell eq.

Möbius transformation:

$$u(x) = \frac{x(1-x_{2g})}{x-x_{2g}}$$

Denote

$$y_0 := u(\infty) = 1 - x_{2g}, \ \hat{x_j} := u(x_{2j-1}), \ u_j := u(x_{2j})$$

$$C: v^2 = u(u-1) \prod_{i=1}^g (u-\hat{x}_i) \prod_{i=1}^{g-1} (u-u_i)$$

Chebyshev variation of a hyperelliptic surface, $g \ge 2$

We have the hyperelliptic surface of the curve

$$C: v^2 = u(u-1) \prod_{j=1}^g (u-x_j) \prod_{j=1}^{g-1} (u-u_j)$$

where

•
$$1 < x_i < u_i < x_{i+1} < \infty$$

- $u_j = u_j(x_1, \ldots, x_g)$
- $\omega = (\omega_1, \dots, \omega_g)^t$ a vector of holom. norm. differentials
- $\exists Q_0 \in \mathcal{C}$ such that

$$n\int_{Q_0^*}^{Q_0}\omega=k_1+\mathbb{B}k_2$$
 with $k_1,\ k_2\in\mathbb{Z}^g$ for $x_j\in\mathbb{R}\setminus\{0,1\}$

ullet That is $\exists Q_0 \in \mathcal{C}$ such that

$$2\int_{P_{\infty}}^{Q_0}\omega=\int_{Q_0^*}^{Q_0}\omega=\hat{c}_1+\mathbb{B}\hat{c}_2\quad\text{with constant }\hat{c}_1,\;\hat{c}_2\in\mathbb{Q}^g\quad\forall x_j\in\mathbb{R}$$

Chebyshev variation of a hyperelliptic surface, $g \ge 2$

The set of branch points $B := \{0, 1, x_1, \dots, x_g, u_1, \dots, u_{g-1}\}.$

- x_1, \ldots, x_g vary independently in $\mathbb{R} \setminus \{0, 1\}$
- $u_1, \ldots, u_{g-1} \in \mathbb{R}$ are functions of x_1, \ldots, x_g

$$\int_{P_{\infty}}^{Q_0} \omega = \hat{c}_1 + \mathbb{B} \hat{c}_2 =: z_0 \quad \text{with constant} \ \ \hat{c}_1, \ \hat{c}_2 \in \mathbb{Q}^g \quad \forall x_i \in \mathbb{R} \setminus \{0,1\}$$

Define

$$\overline{\Omega(P) = \Omega_{Q_0 Q_0^*}(P) - 4\pi \mathrm{i} \, \hat{c}_2^t \omega(P)}$$

Chebyshev variation of a hyperelliptic surface, $g \ge 2$

• Define a basis of holomorphic differentials v_1, \ldots, v_g :

$$v_i(P_{u_j}) = \delta_{ij}, \quad v_i(Q_0) = \delta_{ig}$$
 with $1 \le i \le g, \ 1 \le j \le g-1$.

• Or, explicitly with $\varphi(P)=du/\sqrt{\prod_{a_i\in B}(u-a_i)}$

$$v_{i}(P) = \frac{\varphi(P) \prod_{\alpha=1, \alpha \neq i}^{g-1} (u - u_{\alpha})(u - y_{0})}{\varphi(P_{u_{i}}) \prod_{\alpha, \alpha \neq i} (u_{i} - u_{\alpha})(u_{i} - y_{0})}, \quad i=1, \dots, g-1$$

$$v_{g}(P) = \frac{\varphi(P) \prod_{\alpha=1}^{g-1} (u - u_{\alpha})}{\varphi(Q_{0}) \prod_{\alpha=1}^{g-1} (y_{0} - u_{\alpha})}.$$

Then

$$\frac{\partial u_m}{\partial x_i} = -\frac{\Omega(P_{x_i})}{\Omega(P_{u_m})} v_m(P_{x_i}), \qquad \frac{\partial y_0}{\partial x_i} = -\frac{1}{4} \Omega(P_{x_i}) v_g(P_{x_i}).$$

Example: genus 1

Theorem (V.D, V. Shramchenko 2025)

Let $T \to X$ be a Toda family of the elliptic curves of equation

$$\mu^2 = \lambda(\lambda - 1)(\lambda - x)(\lambda - u),$$

parameterized by x. Then the position of the branch point u of the coverings, as a function of x satisfies the following equation

$$u'' = \frac{1}{2} \left(\frac{u}{x-1} - \frac{u-1}{x} + \frac{1}{u-x} \right) - \frac{u'}{2} \left(\frac{2}{x} + \frac{2}{x-1} + \frac{1}{u-x} \right)$$

$$+ \frac{(u')^2}{2} \left(\frac{2}{u} + \frac{2}{u-1} + \frac{1}{x-u} \right) - \frac{(u')^3}{2} \left(\frac{x}{u-1} - \frac{x-1}{u} + \frac{1}{x-u} \right).$$

The Toda Lattice

A one-dimensional chain of particles with exponential interaction of immediate neighbours

$$\ddot{x}_n(t) = e^{x_{n+1}-x_n} - e^{x_n-x_{n-1}},$$

 $x_n(t)$ is the position of the *n*-th particle at the moment t, $\dot{x}_n(t)$ denotes the derivative with respect to t. Denote: $v_n := \dot{x}_n$ and $c_n = \exp(x_n - x_{n-1})$, $c_n > 0$, Toda lattice equations can be rewritten in the form

$$\dot{v}_n = c_{n+1} - c_n,$$

 $\dot{c}_n = c_n(v_n - v_{n-1}).$

The Toda Lattice: Krichever 1981

The expressions for the solutions:

$$v_n = \frac{d}{dt} \ln \frac{\theta((n+1)U + tV + z_0)}{\theta(nU + tV + z_0)};$$

$$c_n = \frac{\theta((n+1)U + tV + z_0)\theta((n-1)U + tV + z_0)}{\theta^2(nU + tV + z_0)},$$

 z_0 is an arbitrary vector; U is the period vector of the differential of the third kind $\Omega_{\infty^+,\infty_-}$. V is a linear combination of the b-periods of the normalized differentials of the second kind Ω_{∞^-} and Ω_{∞^+} having only a double pole at ∞^- and ∞^+ , respectively, and no other singularities.

The Toda Lattice: Krichever 1981

Theorem (Krichever 1981)

A solution to the Toda lattice is periodic in n with a period N if and only if the solution (v_n, c_n) relative to a hyperelliptic curve and the vector $U/(2\pi i)$ is an N-division point of the lattice generating the Jacobian of Γ , that is

$$\frac{1}{2\pi \mathrm{i}}U=\int_{\infty^{-}}^{\infty^{+}}\omega=M_{1}+\mathbb{B}M_{2},$$

 $M_1, M_2 \in \mathbb{Q}^g$ are vectors, such that $NM_1, NM_2 \in \mathbb{Z}^g$.

The Toda Lattice: Isoperiodic deformations

Theorem (V.D, V. Shramchenko 2025)

Consider an N-periodic in n solution to the Toda lattice constructed by the above formulas from the hyperelliptic surface Γ_{x_0} of genus g. For a value of x_0 away from a set of measure zero, there exists a continuous g-parameter deformation of this solution which remains N-periodic in n. Moreover, any continuous deformation of this solution constructed from a family of curves $\Gamma_{\mathbf{x}}, \ \mathbf{x} \in \mathcal{X}, \ obtained \ from \ \Gamma_{\mathbf{x}_0} \ by \ varying \ \mathbf{x} = (x_1, \dots, x_g) \ and$ allowing $\mathbf{u} = (u_1, \dots, u_g)$ to be functions of \mathbf{x} and which remains N-periodic in n solution to the Toda lattice is obtained by the above formulas. In this case, the branch points u_1, \ldots, u_g of the coverings as functions of \mathbf{x} have the derivatives expressed by our equations and satisfy our system of the second order PDEs with rational coefficients.

In a special case of the SU(N) super-symmetric Yang-Mills theory, the so-called case without fundamental hypermultiplets, the main object is the family of curves

$$C_T(x_1,\ldots,x_n): \mu^2 = \mathcal{P}_N^2(z) - \hat{\Lambda}^2,$$

parametrized by n complex parameters x_1,\ldots,x_n , where $\hat{\Lambda}$ is a real constant; $\mathcal{P}_N(z)$ is a polynomial of degree N. The parameters, vacuum moduli of the Yang-Mills theory, can be chosen as a subset of the set of zeros of the varying polynomial $\mathcal{P}_N^2(z) - \hat{\Lambda}^2$. In general, these curves are non-singular hyperelliptic curves of genus n=N-1, when all zeros of $\mathcal{P}_N^2(z)-\hat{\Lambda}^2$ are simple.

For certain values of the parameters, the curves may become singular, as some of the zeros of $\mathcal{P}^2_N(z) - \hat{\Lambda}^2$ merge to form a double zero. Such singularities occur exactly when some of the particles in the Yang-Mills theory become massless. We will call such situations singular regimes and denote by N-g-1 the number of massless particles, that is of double zeros of $\mathcal{P}^2_N(z) - \hat{\Lambda}^2$. The desingularization of the singular curve \mathcal{C}_T is a hyperelliptic curve $\Gamma_{\mathbf{x}}$ of genus g defined by the equation

$$\Gamma_{:}w^{2}=\Delta_{2g+2}(z).$$

where $\mathbf{x}=(x_1,\ldots,x_g)$ is a subset of zeros of Δ_{2g+2} . The N-g-1 massless particles correspond to the zeros of \mathcal{Q}_{N-g-1} . If all zeros of $\Delta_{2g+2}(z)$ are real, zeros of \mathcal{Q}_{N-g-1} are the *internal* critical points of the generalized Chebyshev polynomial \mathcal{P}_N , that is critical points lying inside the intervals of the support of \mathcal{P}_N .

Theorem (V. D, V. Shramchenko 2025)

Consider the vacuum moduli parameters $\mathbf{x_0} = (x_1^0, \dots, x_{\sigma}^0)$ of a singular regime of the Yang-Mills theory with N-g-1 massless particles. Let Δ^0_{2g+2} be given with distinct $x_i^0, u_i^0 \in \mathbb{C}$. For generic moduli parameters x_0 lying away from some set of measure zero, there exists a local continuous deformation of this singular regime which fixes the number of massless particles in the theory. This deformation is constructed from a family of curves Γ_x with x varying in some neighbourhood of x_0 where the branch points u_1, \ldots, u_g as functions of $= (x_1, \ldots, x_g)$ have the derivatives expressed by our initial conditions and satisfy our system second order PDEs with rational coefficients.

Seiberg and Witten (1994) considered the curve

$$Y^2 = X^3 + 2uX^2 + \Lambda^4 X$$
.

By a Möbius transformations, it can be brought to:

$$C_T(u): \mu^2 = (z^2 - \frac{1}{2}u)^2 - \Lambda^4.$$

This is an elliptic curve for $u \neq \pm 2\Lambda^2$. The polynomial \mathcal{P}_2 is

$$\mathcal{P}_2(z)=z^2-\frac{u}{2}.$$

Consider the singular case $u=2\Lambda^2$. The curve becomes $\mu^2=(z^2-\Lambda^2)^2-\Lambda^4$, which is a singular cubic

$$\mathcal{C}_T(2\Lambda^2): \mu^2 = z^2(z^2 - 2\Lambda^2).$$

With (z, μ) mapping to (z, w) by $w = \mu/z$, we get a nonsingular rational curve:

$$\Gamma: w^2 = z^2 - 2\Lambda^2.$$

 $\mathcal{P}_2(z)=z^2-\Lambda^2$ is the monic Chebyshev polynomial of degree 2 on $[-\Lambda\sqrt{2},\Lambda\sqrt{2}]$. It satisfies Pell's equation $\mathcal{P}_2(z)^2-w^2z^2=\Lambda^4,$ where $\Delta_2(z)=w^2=z^2-2\Lambda^2$ and $\mathcal{Q}_1(z)=z$. The internal critical point of \mathcal{P}_2 is z=0, the zero of \mathcal{Q}_1 , corresponding to one massless particle which arises in this singular case.

The set of the vacuum moduli parameters is empty (g = d - 1 = 0): there are no nontrivial deformations in this case.