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Hyperelliptic curves

Vi=(Uu—u) - (U—Ugr1), u:(uv)eCH u.
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» Three bases in the space of holomorphic 1-forms:

> O, Ub, ..., udTpwith| o = ~ = matrix of a-periods is

» w=(w1,...,wq)" are holomorphic normalized 1-forms:
fa/_ wj = 6; = matrix of b-periods is
> Vi, Vg With vi(Q)) = 65



Choice of the canonical basis of cycles

B B=w0 B, P

PZ(u,-v)

P=(u,v) :




A differential Q on hyperelliptic curves

Jacobian

g
QP =) Qg (P) — 4ni ctw(P)
j=1

where zy = ¢; + B,  and 2}11 Aso(Q)) = 29; 1,60 € CY,

f Q = —4ricok Q = 4ricyk.
ak by



Jacobi inversion problem

» Let zg € Jac(L), zo=c1+Beo, and 37 . A (Q) = 2.
j=1 i

v

Let g; = u(Q@))
» Py = (u= uk, v = 0)- ramification points.

Then

v

aqg 1 .
6le = —ZQ(Pk)V/(Pk)

v

where v; are holomorphic differentials defined by

V/'(QS):(S/'S> jas:17--'ag




Genus one case and Painlevé-VI

Q

Q,

» Modified ¢ satisfies: (¢/(2))2 = p(2) (9(2) — 1) (9(2) — X).
> Zy = 2WiC1 + 2WaCo.

» Picard’s solution to Py(0,0,0, }):

Yo(X) = p(20(x)).



Okamoto transformations ~ 1980
- a group of symmetries of PVI(«, 3,7, 9).

» Example: Okamoto transformation
from Py(0,0,0, ) to Pyi(g, —g. - 3) :

Yo - Picard's solution of Py;(0,0,0, %)

y - Hitchin’s solution of Py,(§,—3,3.3)

_ Yo(¥o — 1) (Yo — x)
YO =10 F Nt~ o0~ 1)

» Formula for y} :




Genus one case and Painlevé-VI

u=p(z)

v

Differential of the third kind on the elliptic curve C:
Q(P) = QQ()’OS(P) — 47ri02w(P).

v

w(P) -holomorphic normalized differential on C

v

Q has two simple poles at Qy et Q5 which project to yp,
Picard’s solution of Py;(0,0,0, }).
Q has two simple zeros at Py et P; which project to y,

t Py
Hitchin’s solution of Py(3, 1,4, %).

v



@ The fundamental bi-differential W(P, Q) : defined by
o W(P,Q) = W(Q, P)
o W(P,Q) = ﬂzp)fmz(% + regular terms
o ¢, W(P.Q) =0

g Q
= Z W(P,-) — 4ri csw(P)
=17/
@ Rauch variational formulas
1
W(P,Q) = s W(P, P )W(Px, Q);

1
8Ukwj(P) = ij(PUk)W(P7 Puk);

0y Bjj = imw;( P )w;j(Px)-



Chebyshev polynomials

To(x), n=0,1,2,... Tn(x) = cosnp, x = cos o,

To(x) = 32x° — 48x* +18x% — 1
To(x) = 256x° — 576x" + 432x° — 120x® 4 9x
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@ The Chebyshev polynomials are solutions to the Pell equation

o

TI(x) = (x = D(x+1)Q_1(x) =1

@ 217"T, is the monic polynomial of degree n which minimizes
the uniform norm on the interval [—1, 1]



Pafnuty Lvovich Chebyshev, 1821-1894




Zolotarev polynomials (d = 2)

Problem: find monic polynomial of degree n minimizing the
uniform norm over the union of two (or more) intervals. Denote
the solution by P, and its norm by L.

The polynomial p, is the solution of the Pell equation on

[)\1, )\2] U [)\3, )\4]

4

1= (V) = [ = A) Q72 (),
j=1
if and only if:
(') ﬁn = An/:l: I—n
(ii) the set [A1, Ao] U [A3, Ag] is the maximal subset of R for which
P, is the minimal polynomial in the above sense.




Zolotarev polynomials




The differential €2 on hyperelliptic curves

@ The curves
2g+1

= T](u-u)

Jj=1

o Define zp = ¢ + B&  with &,& € C8  constant vectors

@ Jacobi inversion:

o Usual way (generic)  >-%; Aw(Q;) = 20 and

g
Q(P) = Qqq: (P) — 4mi &w(P)
j=1

@ Unusual way (constrained)  Ax(Qo) = 2 and

Q(P) = Qqyq; (P) — 4ni &w(P)

Here w = (w1, ...,wg)" are holom. normalized differentials.



Jacobi inversion problem

‘k(w())
k(k@) /D

/\ e Y T W,
o D LAY Rossia:
3 s = klds L~
L ) h:,‘:/d\\*”*ﬂ“ﬁ\

B (1- 59 P ra)

G
wee) w (o)
& Gy 't
0+ 6 /—D
/ KCe)




Constrained Jacobi inversion problem

e /}’9/&‘“(’0)
. K0)) 5 _
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Usual and Constrained Jacobi inversion: billiard perspective

Billiard ordered games, see VD, M. Radnovi¢, JMPA 2006




Generalized Chebyshev polynomials

Let
2g

p = x(x =1 ]Jx=x)

j=1
The generalized Chebyshev polynomials satisfy the Pell equation

P2 (x) — Mz(X)Q,%_g_l(x) =1.

14

oo

. \/ \ / N\
\_

S

Given x1,...,Xxog, the existence of a solution P,, Qn—g—1 to the
Pell equation is not guaranteed.



Pell equations and points of a finite order

Let i1, Pn, Qn_g—1 be such that the Pell equation holds:
PA(x) = 2 (x)Qr_g_1(x) =1

and p? = x(x — 1) H?il(x — x;) defines a hyperelliptic compact
surface £

p e f P 3

< Koo+ o

M »)(J"'ruz&u‘oo4

oo

/'0 A X jcﬁ-h 1;:1/

Then the point cot is of order n that is: | nA,— (o0

g1
M~ =X naar co”

=0




Pell equations and points of a finite order - proof

@ We have

e © ¢ ¢

o P2(x) — 12(x) Qg _y(x) = 1
e and 1% = x(x — 1) %, (x — Xj).-

Jj=1

Define s(P) := Pp(x) + pQn—g—1(x).

1

Then |s(P*) = ——

en |s(P*) S(P)
because

S(P*)S(P) = (Pn - MQn—g—l)(Pn + NQn—g—l) =1L

s(P) has a pole of order n at P ~ oo™ (where y ~ x?)
therefore s(P) has a zero of order nat P ~ oo™ ( pu ~ —x?)
Thus nA,-(c0™)=0. O
The converse is also true: if co™ is a point of order n, then

there is a solution to the Pell equation for the 1 in question.



Dynamics of Chebyshev polynomials

2
P2 =x(x —1) Hjil(x = X))

The Pell equation: P2(x) — ,u2(x)Q,2,_g_1(X) =1.
Positions of x», x4 are determined by xj, x3 and the Pell eq.

[

e ©

1

=

@ Mobbius transformation:

1—
U(X) — X( ng)
X — Xog
@ Denote

Yo :=u(00) =1—xog, X:=ulxj-1), uj:= u(x;)
Qo = “u(oo™)” is of order 2n on the curve VX; € R\ {0,1}

g—1

g
C : v2:u(u—1)H(U—>A<j)H(U_“j)

j=1



Chebyshev variation of a hyperelliptic surface, g > 2

We have the hyperelliptic surface of the curve

g g1
C: V= u(u—l)H(u—xj)H(u— uj)
where j=1 j=1
0 1 <x <u<xjp1 <00
o uj = uj(x1,...,xg)
® w=(w1,...,wg)" a vector of holom. norm. differentials
@ dQg € C such that

Qo
n/ w=ki+Bky with ki, ko € Z8 for x; € R\{0,1}
Q@

@ That is 3Qp € C such that

Qo Qo
2/ w= / w=2C_+B&  with constant &, & € Q% Vx; € R
00 Q5




Chebyshev variation of a hyperelliptic surface, g > 2

f * p*; Pq: &, pu R

B <7

[N
« B @ s S &
/0 A 1J de 39 . /
The set of branch points B := {0,1,x1,...,Xg, U1,..., Ug—1}.
® Xi,...,Xg vary independently in R\ {0,1}
® uy,...,Ug—1 € R are functions of xq,...,xg

Qo
/ w=¢& +B& =:z with constant &, & € Q8 Vx; € R\ {0,1}
P

@ Define

[Q(P) = Qo0 (P) — 4ni étw(P)]|



Chebyshev variation of a hyperelliptic surface, g > 2

pe PR Qe R
|

[

@ Define a basis of holomorphic differentials vy, ..., vy :

with 1<i<g 1<j<g-1.

Vi(PUj) = 5ij’ Vi(QO) = 5,'g

@ Or, explicitly with x(P)=du/ TToea(—3)

PITTEZ] qsiv ) (u=30)

P~ Pu,maa#,(u “ua)(u—yg)  ThETE
_ <P(P)H (u—ue)
s Qo TiE- 1(Y0 va)
@ Then
Oupm Q(Py,) dyo
=Xy (P Q P
I Py P g = TS Pe)ve(Px)-




Example: genus 1

Theorem (V.D, V. Shramchenko 2025)
Let T — X be a Toda family of the elliptic curves of equation

u2 = 2= 1A = x)(A — u),

parameterized by x. Then the position of the branch point u of the
coverings, as a function of x satisfies the following equation

L u u—1+ 1 74 2+ 2 N 1
u-2 x—1 X u—x 2 \x x-—1 u—x

+(u')2 2+ 2 N 1 () [ x x—1+ 1
2 u u—1 x—u 2 u—1 u xX—u)

v,




The Toda Lattice

A one-dimensional chain of particles with exponential interaction
of immediate neighbours

Xn(t) — eXn+1_Xn o eXn_anl’

Xn(t) is the position of the n-th particle at the moment t, x,(t)
denotes the derivative with respect to t. Denote: v,,:= x,and ¢, =
exp(xp — Xp—1), ¢n > 0, Toda lattice equations can be rewritten in
the form

Vn = Cp+1 — Cpy

¢n = cn(Vn — Vn—1).



The Toda Lattice: Krichever 1981

The expressions for the solutions:

_d, 0+ YU+ Y+ z)
Cdt O(nU + tV + z)

Vn

00+ 1)U+ tV + 2)6((n = U + tV + 2)
" 62(nU + tV + z) ’

zg is an arbitrary vector; U is the period vector of the differential
of the third kind Q..+ . V is a linear combination of the
b-periods of the normalized differentials of the second kind Q-
and Q..+ having only a double pole at oo™ and oo™, respectively,
and no other singularities.




The Toda Lattice: Krichever 1981

Theorem (Krichever 1981)

A solution to the Toda lattice is periodic in n with a period N if
and only if the solution (v, c,) relative to a hyperelliptic curve and
the vector U/(2mi) is an N-division point of the lattice generating
the Jacobian of T', that is

1 oo™
—_U:/ w = M; + BM,,
27

o0

My, My € Q# are vectors, such that NMy, NM, € Z5.




The Toda Lattice: Isoperiodic deformations

Theorem (V.D, V. Shramchenko 2025)

Consider an N-periodic in n solution to the Toda lattice
constructed by the above formulas from the hyperelliptic surface
Ik, of genus g. For a value of xg away from a set of measure zero,
there exists a continuous g-parameter deformation of this solution
which remains N-periodic in n. Moreover, any continuous
deformation of this solution constructed from a family of curves
Mk, X € X, obtained from Ty, by varying x = (x1,...,Xg) and
allowing w = (uy, ..., ug) to be functions of x and which remains
N-periodic in n solution to the Toda lattice is obtained by the
above formulas. In this case, the branch points uy, ..., ug of the
coverings as functions of x have the derivatives expressed by our
equations and satisfy our system of the second order PDEs with
rational coefficients.




Applications to the SU(N) Seiberg-Witten theory

In a special case of the SU(N) super-symmetric Yang-Mills theory,
the so-called case without fundamental hypermultiplets, the main
object is the family of curves

CT(X17 s aXn) : ,LL2 = 73/2\1(2) - A27

parametrized by n complex parameters xi, ..., X,, where Ais a real
constant; Ppy(z) is a polynomial of degree N. The parameters,
vacuum moduli of the Yang-Mills theory, can be chosen as a subset
of the set of zeros of the varying polynomial 77,2\,(2) — A2 In
general, these curves are non-singular hyperelliptic curves of genus
n= N — 1, when all zeros of P3,(z) — A? are simple.



Applications to the SU(N) Seiberg-Witten theory

For certain values of the parameters, the curves may become
singular, as some of the zeros of P3(z) — A2 merge to form a
double zero. Such singularities occur exactly when some of the
particles in the Yang-Mills theory become massless. We will call
such situations singular regimes and denote by N — g — 1 the
number of massless particles, that is of double zeros of Px(z) — A2,
The desingularization of the singular curve Ct is a hyperelliptic
curve [y of genus g defined by the equation

rw? = Nogi2(2).

where x = (xi,...,Xg) is a subset of zeros of Aoz i>. The

N — g — 1 massless particles correspond to the zeros of Qn_g_1. If
all zeros of Aogyo(z) are real, zeros of Qn_g_1 are the internal
critical points of the generalized Chebyshev polynomial Py, that is
critical points lying inside the intervals of the support of Py.



Applications to the SU(N) Seiberg-Witten theory

Theorem (V. D, V. Shramchenko 2025)

Consider the vacuum moduli parameters xg = (x{,...,xJ) of a
singular regime of the Yang-Mills theory with N — g — 1 massless
particles. Let Agg 1o be given with distinct XJQ, uj(-) € C. For generic
moduli parameters xg lying away from some set of measure zero,
there exists a local continuous deformation of this singular regime
which fixes the number of massless particles in the theory. This
deformation is constructed from a family of curves I'y with x
varying in some neighbourhood of xg where the branch points
uy,. .., Ug as functions of = (xi,...,xg) have the derivatives
expressed by our initial conditions and satisfy our system second
order PDEs with rational coefficients.




Applications to the SU(N) Seiberg-Witten theory

Seiberg and Witten (1994) considered the curve
Y2 = X3 4 2uX? + A*X.
By a Mobius transformations, it can be brought to:
Cr(u): ,u2 = (z2 — %u)2 — A%,

This is an elliptic curve for u # +2A%. The polynomial P5 is

Pa(z) = 2° — g



Applications to the SU(N) Seiberg-Witten theory

Consider the singular case u = 2A%. The curve becomes
p? = (22 — N?)2 — A*, which is a singular cubic

CT(2N?) : p? = 2%(2% — 2A?).

With (z, 1) mapping to (z,w) by w = u/z, we get a nonsingular
rational curve:
M:w? =22 - 272,

P>(z) = z? — A? is the monic Chebyshev polynomial of degree 2 on
[-AV2,AV/2]. It satisfies Pell's equation Pa(z)? — w?z? = A%,
where Ay(z) = w? = z2 — 2A% and Q;(z) = z. The internal
critical point of P, is z = 0, the zero of 91, corresponding to one
massless particle which arises in this singular case.

The set of the vacuum moduli parameters is empty

(g = d —1=0): there are no nontrivial deformations in this case.





