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Abstract

Langlands duality is one of the most influ-

ential topics in mathematical research. It has

many different appearances and influential subtopics.

Yet there is a topic that until now seems unre-

lated to the Langlands program. That is the

topic of invariant differential operators. That

is strange since both items are deeply rooted

in Harish-Chandra’s representation theory of

semisimple Lie groups. In this paper we start

building the bridge between the two programs.

We first give a short review of our method of

constructing invariant differential operators. A

cornerstone in our program is induction of rep-

resentations from parabolic subgroups P=MAN

of semisimple Lie groups. The connection to

the Langlands program is through the sub-

group M which other authors use in the context

of the Langlands program.

Next we consider the group SL(2n,R) which is



currently prominently used via Langlands du-

ality. In that case we have M = SL(n,R) ×
SL(n,R). We classify the induced represen-

tations implementing P = MAN . We find out

and classify the reducible cases. Using our pro-

cedure we classify the invariant differential op-

erators in this case.
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Introduction

In the last 50 years Langlands duality is one

of the most influential topics in mathematical

research. It has many different appearances

and influential subtopics, cf. an incomplete

list in loc. cit. Note that some papers are

written by authors who have created influential

topics themselves. The last fact stresses the

omnipresence of the Langlands program.

Yet, the concept of invariant differential op-

erators has not been related to the Langlands

program in literature. That is strange since

both items are deeply rooted in Harish-Chandra’s

representation theory of semisimple Lie groups.

Here we start building a bridge between the two

programs.

Our attempt is based on our approach to the

construction of invariant differential operators



- for an exposition we refer to [VKD1] which is

based also on many papers, see loc. cit. Our

approach is deeply related to the Langlands

general classification of representations of real

semisimple groups G taking into account the

refinement by Knapp-Zuckermann.

[R.P. Langlands, On the Classification of Irre-

ducible Representations of Real Algebraic Groups,

Mimeographed notes Princeton 1973; Published

in: Math.Surveys Monogr. 31 (1989) 101-170;

A.W. Knapp, G.J. Zuckerman, Springer Lec-

ture Notes in Math. Vol. 587, pp. 138-159

(1977); Ann. Math. 116, 389-501 (1982).

One main ingredient in Langlands approach

are the parabolic subgroups P = MAN , such

that M is semisimple subgroup of our group

G under study, A is abelian subgroup, N is

nilpotent subgroup preserved by the action A.

Altogether, there is a local (Bruhat) decompo-

sition of G using a subgroup G′ = PÑ , where



Ñ is a nilpotent subgroup of G isomorphic to

N also preserved by the action A, so that G′

is dense in G. According to the construction

of Langlands-Knapp-Zuckermann every admis-

sible irreducible representation of G may be

obtained as a subrepresentation of represen-

tations of G induced by a representations of

some P (some class is enough - see details be-

low).

Our construction of intertwining differential

operators is based on the fact that the struc-

ture of parabolic subgroups is related to vari-

ous subgroups of the Weyl groups W (GC,HC),

where G is the Lie algebra of G, H is the Cartan

subalgebra of some MA. This is also related to

various intertwining operators in the Langlands

dual group.



Another aspect of the above is the Cheval-
ley automorphism in the case of real groups
which is an exhibition of the local Langlands
correspondence over R. Another application to
representation theory is using Heisenberg mod-
ules.

A full review with literature is in our paper
loc. cit. (in ”Mathematics”).
We just mention some points that are reviewed
there.
- Gauge theory aspects of the geometric Lang-
lands programme.
- An exotic ’Chtoucas’ application of the Lang-
lands programme.
- Langlands duality extends to Poisson-Lie du-
ality via cluster theory and to representations
of W-algebras in the quantum framework.
- A proof of the global Langlands conjecture
for GL(2) over a function field
- Two-parameter generalization of the geomet-
ric Langlands correspondence is proved for all



simply-laced Lie algebras. This is related to

two-parameter quantum groups, e.g., and to

6d conformal supersymmetry [VKD1] ;

- Applications to integrability.

Further, the present talk is organized as fol-

lows. In the next section we give a synopsis of

our approach. Then we apply this to the group

SL(2n,R), using the Langlands duality of the

subgroup M used in the example. The cases

n = 2,3,4 are exposed in separate subsections.



Preliminaries

We start by giving a synopsis of our program

of canonical construction of invariant differen-

tial operators.

Let G be a semi-simple, non-compact Lie group,

and K a maximal compact subgroup of G.

Then, we have an Iwasawa decomposition G =

KA0N0, where A0 is an Abelian simply con-

nected vector subgroup of G and N0 is a nilpo-

tent simply connected subgroup of G preserved

by the action of A0. Furthermore, let M0 be

the centralizer of A0 in K. Then, the subgroup

P0 = M0A0N0 is a minimal parabolic subgroup

of G. A parabolic subgroup P ′ = M ′A′N ′ is

any subgroup of G which contains a minimal

parabolic subgroup.

Furthermore let G,K,P,M,A,N denote the

Lie algebras of G,K,P,M,A,N , resp.



Further, for simplicity, we restrict to maximal

parabolic subgroups P = MAN , i.e., rankA =

1, resp., to maximal parabolic subalgebras P =

M⊕A⊕N with dim A = 1.

Let ν be a (non-unitary) character of A, ν ∈
A∗, parameterized by a real number d, called

(for historical reasons) the conformal weight or

energy.

Furthermore, let µ fix a discrete series repre-

sentation Dµ of M on the Hilbert space Vµ , or

the finite-dimensional (non-unitary) represen-

tation of M with the same Casimirs.

We call the induced representation χ = IndGP (µ⊗
ν⊗1) an elementary representation of G. (These

are called generalized principal series represen-

tations (or limits thereof) in [Knapp].) Their

spaces of functions are:



Cχ = {F ∈ C∞(G,Vµ)|F(gman) =

= e−ν(H) ·Dµ(m−1)F(g)}

where a = exp(H) ∈ A′, H ∈ A′ , m ∈ M ′,
n ∈ N ′. The representation action is the left

regular action:

(T χ(g)F)(g′) = F(g−1g′), g, g′ ∈ G. (1)

An important ingredient in our considerations

are the highest/lowest-weight representations

of GC. These can be realized as (factor-modules

of) Verma modules V Λ over GC, where Λ ∈
(HC)∗, HC is a Cartan subalgebra of GC and

the weight Λ = Λ(χ) is determined uniquely

from χ [VKD1].

Actually, since our ERs may be induced from

finite-dimensional representations ofM (or their

limits) the Verma modules are always reducible.



Thus, it is more convenient to use generalized

Verma modules Ṽ Λ such that the role of the

highest/lowest-weight vector v0 is taken by the

(finite-dimensional) space Vµ v0 . For the gen-

eralized Verma modules (GVMs) the reducibil-

ity is controlled only by the value of the con-

formal weight d. Relatedly, for the intertwining

differential operators, only the reducibility with

regard to non-compact roots is essential.

Another main ingredient of our approach is

as follows. We group the (reducible) ERs with

the same Casimirs in sets called multiplets.

The multiplet corresponding to fixed values of

the Casimirs may be depicted as a connected

graph, the vertices of which correspond to the

reducible ERs and the lines (arrows) between

the vertices correspond to intertwining oper-

ators. The explicit parameterization of the

multiplets and of their ERs is important in un-

derstanding of the situation. The notion of



multiplets was introduced in 1985 and applied

to representations of SOo(p, q) and SU(2,2),

resp., induced from their minimal parabolic sub-

algebras. Then it was applied to the conformal

superalgebra, to quantum groups, to infinite-

dimensional (super)algebras, see later volumes

of [VKD1].

In fact, the multiplets contain explicitly all the

data necessary to construct the intertwining

differential operators. Actually, the data for

each intertwining differential operator consist

of the pair (β,m), where β is a (non-compact)

positive root of GC, m ∈ N, such that the

BGG Verma module reducibility condition (for

highest-weight modules) is fulfilled:

(Λ + ρ, β∨) = m, β∨ ≡ 2β/(β, β) (2)

where ρ is half the sum of the positive roots

of GC. When the above holds, then the Verma

module with shifted weight V Λ−mβ (or Ṽ Λ−mβ



for GVM and β non-compact) is embedded in

the Verma module V Λ (or Ṽ Λ). This embed-

ding is realized by a singular vector vs deter-

mined by a polynomial Pm,β(G−) in the univer-

sal enveloping algebra (U(G−)) v0 , and G− is

the subalgebra of GC generated by the negative

root generators. More explicitly [?], vsm,β =

Pm,β v0 (or vsm,β = Pm,β Vµ v0 for GVMs). Then,

there exists [VKD1] intertwining differential

operator

Dm,β : Cχ(Λ) −→ Cχ(Λ−mβ) (3)

given explicitly by:

Dm,β = Pm,β(Ĝ−) (4)

where Ĝ− denotes the right action on the func-

tions F.



Main results

Restricted Weyl groups and related notions

In our exposition below, we shall use the so-

called Dynkin labels:

mi ≡ (Λ + ρ, α∨i ), i = 1, . . . , n, (5)

where Λ = Λ(χ), ρ is half the sum of the posi-

tive roots of GC.

We shall use also the so-called Harish–Chandra

parameters:

mβ ≡ (Λ + ρ, β∨) , (6)

where β is any positive root of GC. These

parameters are redundant, since they are ex-

pressed in terms of the Dynkin labels; however,

some statements are best formulated in their

terms. (Clearly, both the Dynkin labels and

Harish–Chandra parameters have their origin

in the BGG reducibility condition (2).)



Next, we recall the action of the Weyl group

on highest weights:

wβ(Λ)
.

= Λ− (Λ + ρ, β∨)β (7)

and thus,

wβ(Λ) = Λ−mββ (8)

and the shifted weight in (3) results by the

action of the Weyl group as in (8).

Next we mention the important notion of re-

stricted Weyl group. We first need the so-

called restricted roots.

Let ∆A′ be the restricted root system of (G,A′):

∆A′
.

= {λ ∈ A′∗ | λ 6= 0, GλA′ 6= 0} ,
GλA′

.
= {X ∈ G | [Y,X] = λ(Y )X , ∀Y ∈ A′} .(9)

The elements of ∆A′ are called A′-restricted

roots.

[The terminology comes from the fact that



things may be arranged so that these roots

are obtained as restriction to A′ of some roots

of the root system ∆ of the pair (GC,HC).]

For λ ∈∆A′ , GλA′ are called A′-restricted root

spaces, dimR GλA′ ≥ 1.

Next we introduce some ordering (e.g., the

lexicographic one) in ∆A′ . Accordingly the lat-

ter is split into positive and negative restricted

roots: ∆A′ = ∆+
A′ ∪∆−A′.

Furthermore, we introduce the simple restricted

root system ∆R
A′ , which is the simple root sys-

tem of the restricted roots. Next we introduce

the restricted Weyl reflections: for each root

λ ∈∆+
A′ we define a reflection sλ in A′∗ :

sλ(µ) ≡ µ− 2
(λ, µ)

(λ, λ)
λ , µ ∈ A′∗ (10)

Clearly, sλ(λ) = −λ , s2
λ =idA′∗ .



The above reflections generate the A′-restricted

Weyl group W (G,A′).

The above may be applied to the case when

instead of some A′ we use an arbitrary sub-

algebra H′ of H.



The case of SL(2n,R)

In this talk we treat the case of G = SL(2n,R),

G = sl(2n,R). We restrict to maximal parabolic

subalgebra

P = M⊕A⊕N (11)

M = sl(n,R)⊕ sl(n,R) , dimA = 1, dimN = n2

In the context of relative Langlands duality

this case was studied as the subcase of hy-

perspherical dual pairs. There the relation to

physics appeared as arithmetic analog of the

electric-magnetic duality of boundary condi-

tions in four-dimensional supersymmetric Yang-

Mills theory. This aspect will be recovered for

n = 2 below.

In this section we start with G = SL(m,R),

the group of invertible m × m matrices with

real elements and determinant 1. Then G =



sl(m,R) and the Cartan involution is given ex-

plicitly by: h̃X = − tX, where tX is the

transpose of X ∈ G. Thus, K ∼= so(m), and

is spanned by matrices (r.l.s. stands for real

linear span):

K = r.l.s.{Xij ≡ eij − eji , 1 ≤ i < j ≤ m} ,
(12)

where eij are the standard matrices with only

nonzero entry (=1) on the i-th row and j-th

column, (eij)k` = δikδj` . (Note that G does not

have discrete series representations if m > 2.)

Further, the complementary space P is given

by:

P = r.l.s.{Yij ≡ eij + eji , 1 ≤ i < j ≤ m ,(13)

Hj ≡ ejj − ej+1,j+1 , 1 ≤ j ≤ m− 1} .(14)

The split rank is r = m− 1, and from (13) it

is obvious that in this setting one has:

H = r.l.s.{Hj , 1 ≤ j ≤ n− 1 = r} . (15)



The simple root vectors are given explicitly

by:

X+
j

.
= ej,j+1 , X−j

.
= ej+1,j , 1 ≤ j ≤ m−1 .

(16)

Note that matters are arranged so that

[X+
j , X

−
j ] = Hj , [Hj, X

±
j ] = ±2X±j , (17)

and further we shall denote by sl(2,R)j the

sl(2,R) subalgebra of G spanned by X±j , Hj .

In our case of consideration m = 2n we have

M = sl(n)⊕ sl(n) (18)

and we use representations of M indexed as

follows:

M̂ = (m1, . . . ,mn−1 ; mn+1, . . . ,m2n−1) (19)

When all mj are natural numbers M̂ indexes

the unitary finite-dimensional irreps of M.



sl(4)

In the case of sl(4) the parabolic M factor is:

M4 = sl(2)⊕ sl(2) (20)

the representations being indexed by the num-

bers m1,m3

Relatedly the representations of G are indexed

by:

χ4 = [m1,m2,m3] (21)

It is well-known that when all mj are natural

numbers then χ4 exhausts the finite-dimensional

representations of G. Each representation χ4

is part of 24-member multiplet naturally corre-

sponding to the 24 elements of the Weyl group

of sl(4). When we consider induction fromM4

then we have six-member multiplets (sextets)



parametrized as follows:

χ− = {m1 ,m2 ,m3 }, (22)

χ′− = {m12 ,−m2 ,m23}, Λ′− = Λ− −m2α2

χ′′− = {m2 ,−m12 ,m13}, Λ′′− = Λ′− −m1α12

χ′′+ = {m13 ,−m23 ,m2}, Λ′′+ = Λ′− −m3α23

χ′+ = {m23 ,−m13 ,m12}, Λ′+ = Λ′′− −m3α23 =

= Λ′′+ −m1α12

χ+ = {m3 ,−m13 ,m1}, Λ+ = Λ′+ −m2α2

where m12 ≡ m1 +m2, m23 ≡ m2 +m3, m13 ≡
m1+m2+m3. Note that the ± pairs are related
by Knapp-Stein integral intertwining operators
G± so that the operators G+ act from χ− to
χ+, while G− act from χ+ to χ−, etc.

Thus, the Knapp-Stein duality is a manifes-
tation of the Langlands duality.

We recall that the number NM of ERs in
a multiplet corresponding to induction from a
parabolic given by [VKD1]:

NM =
|W (G,H)|
|W (M,Hm)|

(23)



which in our case (M =M4) gives:

NM =
24

4
= 6. (24)

what we have obtained.

An alternative parametrization stressing the

duality is given as follows:

χ± = { (m1 ;m3)± ; c = ± (m2 + 1
2(m1 +m3)) },

χ′± = { (m12 ,m23)± ; c = ± 1
2(m1 +m3)},

χ′′± = { (m2 ,m13)± ; c = ± 1
2(m1 −m3)},

where (p; q)+ = (q; p), (p; q)− = (p; q),

The irreducible subrepresentations E of χ− are

finite-dimensional, exhausting all finite-dimensional

(non-unitary) representations of sl(4), and of

all real forms.

Note also that the dimensions of the ± induc-

ing pair of M are the same, namely, m1m3 for

χ±, m12m23 for χ′±, m2m13 for χ′′±.



Finally, we use the simplest case m1 = m2 =

m3 = 1 to exhibit the electro-magnetic duality

which has transparent physical meaning for the

conformal real form su(2,2). The multiplet is

depicted on Fig. 1. (Complete treatment may

be found in [VKD1].)
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Fig. 1. Simplest case of conformal invariant differential operators

F± depict the duality decomposition of the electromagnetic field Fµν .

Aµ, resp., Jµ, is the electromagnetic potential, resp., the current.

I± depict the differential operators which come from the equation ∂[µAν ]=Fµν
.

Knapp-Stein operators relate cases symmetric w.r.t. the central black dot.



Multiplets containing the finite-dimensional sub-
representations are called main multiplets. The
other multiplets are called reduced multiplets.
These contain inducing finite-dimensional rep-
resentations of M.

In the case at hand there are three such cases
so that each reduced multiplet is a doublet
(containing two ERs). Explicitly the three cases
are:

χ±1 = { (m2 ,m23)± ;

c = ± 1
2m3}, (25a)

Λ+
1 = Λ−1 −m3α23

χ±2 = { (m1 ;m3)± ;

c± = ± 1
2(m1 +m3)}, (25b)

χ±3 = { (m12 ,m2)± ;

c = ± 1
2m1}, (25c)

Λ+
3 = Λ−3 −m1α12

Note that here the invariant operators are de-
formations of the Knapp-Stein integral opera-
tors from the sextet picture. Thus, those from



χ+ to χ− are still integral operators, while

those from χ− to χ+ are differential op-

erators via degeneration of the Knapp-Stein

integral operators. Yet in the first and third

case these are differential operators inherited

from the sextets, only the operators in (25b)

from χ−2 to χ+
2 are obtained due to genuine

degeneration of the Knapp-Stein integral op-

erators. This is the standard degeneration of

the two-point function-kernel which at the re-

ducibility points is a generalized function with

regularization turning it into delta-function (cf.

Gelfand et al (Vol 5)). Finally, we add that in

the case m1 = m3 = n the operators (25b)

become a degree of the d’Alembert operator:

Dn,n = const �c
+

= const�n (26)



sl(6)

Here we take up the case sl(6) with parabolic

M factor

M5 = sl(3,R)⊕sl(3,R) = M2L⊕M2R (27)

We start with elementary representations of

sl(6,R) indexed by five numbers:

χ = {m1 ,m2 ,m3 ,m4 ,m5} , (28)

so that m1,m2 index the representations of

M2L, m4,m5 index the representations of

M2R, while m3 indexes the representations

of the dilatation subalgebra A.

When all mj are positive integers we use for-

mula (23) so we have a multiplet of 20 mem-

bers since:

NM =
|W (G,H)|
|W (M5,H5)|

=
6!

(3!)2
= 20. (29)



Their signatures are:

χ1 = {m1 ,m2 ,m3 ,m4 ,m5 }, (30)

χ2 = {m1 ,m23 ,−m3 ,m34 ,m5 },
χ3 = {m12 ,m3 ,−m23 ,m24 ,m5 },
χ4 = {m1 ,m24 ,−m34 ,m3 ,m45 },
χ5 = {m2 ,m3 ,−m13 ,m14 ,m5 },
χ6 = {m12 ,m34 ,−m24 ,m23 ,m45 },
χ7 = {m1 ,m25 ,−m35 ,m3 ,m4 },
χ8 = {m2 ,m34 ,−m14 ,m13 ,m45 },
χ9 = {m13 ,m4 ,−m24 ,m2 ,m35 },
χ10 = {m12 ,m35 ,−m25 ,m23 ,m4 },
χ11 = {m23 ,m4 ,−m14 ,m12 ,m35 },
χ12 = {m2 ,m35 ,−m15 ,m13 ,m4 },
χ13 = {m13 ,m45 ,−m25 ,m2 ,m34 },
χ14 = {m3 ,m4 ,−m14 ,m1 ,m25 },
χ15 = {m23 ,m45 ,−m15 ,m12 ,m34 },
χ16 = {m14 ,m5 ,−m25 ,m2 ,m3 },
χ17 = {m3 ,m45 ,−m15 ,m1 ,m24 },
χ18 = {m24 ,m5 ,−m15 ,m12 ,m3 },
χ19 = {m34 ,m5 ,−m15 ,m1 ,m23 },
χ20 = {m4 ,m5 ,−m15 ,m1 ,m2 }



The Proof is constructive. We start with the

representation χ1, then by our procedure we

find the embedded representation χ2. Then

from the latter we find the embedded represen-

tations χ3 and χ4. We proceed to the last case

χ20 which is reducible only by the Knapp-Stein

operator intertwining it with its Langlands dual

χ1. ♦

The full picture of embeddings is seen on Fig.

2.
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Fig. 2. Main multiplets for sl(6,R)



We quickly observe that the representations
χn and χ21−n are Langlands duals related by
Knapp-Stein operators. More explicitly, this
duality is given by the following presentation
of the same multiplet:

χ±1 = { (m1 ,m2 ; m4 ,m5)± ;

c = ±(m3 + 1
2m12,45) },

χ±2 = { (m1 ,m23 ; m34 ,m5)± ; c = ±1
2m12,45 },

χ±3 = { (m12 ,m3 ; m24 ,m5)± ; c = ±1
2m1,45 },

χ±4 = { (m1 ,m24 ; m3 ,m45)± ; c = ±1
2m12,5 },

χ±5 = { (m2 ,m3 ; m14 ,m5)± ; c = ±1
2(m45 −m1) },

χ±6 = { (m12 ,m34 ; m23 ,m45)± ;

c = ±1
2(m1 +m5) },

χ±7 = { (m1 ,m25 ; m3 ,m4)± ; c = ±1
2(m12 −m5) },

χ±8 = { (m2 ,m34 ; m13 ,m45)± ; c = ±1
2(m5 −m1) },

χ±9 = { (m13 ,m4 ; m2 ,m35)± ; c = ±1
2(m1 +m5) },

χ±10 = { (m12 ,m35 ; m23 ,m4)± ; c = ±1
2(m1 −m5) },

where (p, q; r, s)+ ≡ (r, s; p, q), (p, q; r, s)− ≡
(p, q; r, s), and the inducing number of the di-
latation subalgebra A is replaced by the con-
formal factor c. Clearly, χ−n = χn, χ+

n =
χ21−n for 1 ≤ n ≤ 10.



Reduced multiplets

Here we just list the reduced multiplets which

contain finite-dimensional irreps of the induc-

ing M.

1 χ′±3 = { (m2 ,m3 ; m24 ,m5)± ;

c = ±1
2m45 },

χ′±6 = { (m2 ,m34 ; m23 ,m45)± ; c = ±1
2m5 },

χ′±9 = { (m23 ,m4 ; m2 ,m35)± ; c = ±1
2m5 },

13 χ′′±6 = { (m2 ,m4 ; m2 ,m45)± ; c = ±1
2m5 },

14 χ′′±3 = { (m2 ,m3 ; m23 ,m5)± ; c = ±1
2m5 },

15 χ′′±9 = { (m23 ,m4 ; m2 ,m34)± ; c = 0 },(31a)

135 χ6 = { (m2 ,m4 ; m2 ,m4) ; c = 0 }, (31b)

2 χ′±2 = { (m1 ,m3 ; m34 ,m5)± ; c = ±1
2m1,45 },

χ′±4 = { (m1 ,m34 ; m3 ,m45)± ; c = ±1
2m1,5 },

χ′±7 = { (m1 ,m35 ; m3 ,m4)± ; c = ±1
2(m1 −m5) },

24 χ′′±2 = { (m1 ,m3 ; m3 ,m5)± ; c = ±1
2m1,5 },

25 χ′′±4 = { (m1 ,m34 ; m3 ,m4)± ; c = ±1
2m1 },



3 χ′±1 = { (m1 ,m2 ; m4 ,m5)± ; c = ±1
2m12,45 },

χ′±6 = { (m12 ,m4 ; m2 ,m45)± ; c = ±1
2m1,5 },

χ′±8 = { (m2 ,m4 ; m12 ,m45)± ; c = ±1
2(m5 −m1) },

Note that the numbers on the left indicate

which representation numbers are missing in

the displayed signatures.

Further, note that the ± pairs are Knapp-

Stein pairs, except the case (31a) where the

operator is just a flip of the finite-dimensional

inducing irreps. Note also that the case (31b)

is a singlet.

Note that we do not display reduced multiplets

with missing labels m4 and m5 since due to

duality they are equivalent to multiplets with

missing labels m2, m1, resp.



The case sl(8)

Here we consider the case sl(8) with parabolic
M factor

M7 = sl(4,R)⊕sl(4,R) = M2L⊕M2R (32)

Analogously to the previously considered cases
the representations of sl(8,R) are indexed by
seven numbers:

χ = {m1 ,m2 ,m3 ,m4 ,m5 ,m6, ,m7} , (33)

so that m1,m2,m3 index the representations
of M2L, m5,m6,m7 index the representations
of M2R, and m4 indexes the representations
of the dilatation subalgebra A.

When all mj are positive integers we again use
the formula (23) so we have a multiplet of 70
members since:

NM =
|W (G,H)|
|W (M7,H7)|

=
8!

(4!)2
= 70. (34)



Their signatures are:

χ±1 = { (m1 ,m2 ,m3 ,m4 ,m5 ,m6 ,m7)±,
c± = ± (m4 + 1

2m13,57) },
χ±2 = { (m1 ,m2 ,m34 ,−m4 ,m45 ,m6 ,m7)± ,

c± = ± (1
2m17)} (35)

χ±3 = { (m1 ,m23 ,m4 ,−m34 ,m35 ,m6 ,m7)±

c± = ± (1
2m12,57) }

χ±4 = { (m1 ,m2 ,m35 ,−m45 ,m4 ,m56 ,m7)± ,

c± = ± (1
2m13,67) }

χ±5 = { (m12 ,m3 ,m4 ,−m24 ,m25 ,m6 ,m7)± ,

c± = ± (1
2m1,57) }

χ±6 = { (m1 ,m23 ,m45 ,−m35 ,m34 ,m56 ,m7)± ,

c± = ± (1
2m12,67) }

χ±7 = { (m1 ,m2 ,m36 ,−m46 ,m4 ,m5 ,m67)± ,

c± = ± (1
2m13,7) }

χ±8 = { (m2 ,m3 ,m4 ,−m14 (m15 ,m56 ,m7)±

c± = ± (1
2m−1,57) }

χ±9 = { (m12 ,m3 ,m45 ,−m25 (m24 ,m56 ,m7)± ,

c± = ± (1
2m1,67) }

χ±10 = { (m1 ,m24 ,m5 ,−m35 (m3 ,m46 ,m7)± ,

c± = ± (1
2m12,67) }

χ±11 = { (m1 ,m23 ,m46 ,−m36 (m34 ,m5 ,m67)± ,

c± = ± (1
2m12,7) }



χ±12 = { (m1 ,m2 ,m37 ,−m47 ,m4 ,m5 ,m6)± ,

c± = ± (1
2m13,−7) }

χ±13 = { (m2 ,m3 ,m45 ,−m15 (m14 ,m56 ,m7)± ,

c± = ± (1
2m−1,67) }

χ±14 = { (m12 ,m34 ,m5 ,−m25 (m23 ,m46 ,m7)± ,

c± = ± (1
2m1,67) }

χ±15 = { (m12 ,m3 ,m46 ,−m26 (m24 ,m5 ,m67)± ,

c± = ± (1
2m1,7) }

χ±16 = { (m1 ,m24 ,m56 ,−m36 (m3 ,m45 ,m67)± ,

c± = ± (1
2m12,7) }

χ±17 = { (m1 ,m23 ,m47 ,−m37 ,m34 ,m5 ,m6)± ,

c± = ± (1
2m12,−7) }

χ±18 = { (m2 ,m3 ,m46 ,−m16 ,m14 ,m5 ,m67)± ,

c± = ± (1
2m−1,7) }

χ±19 = { (m2 ,m34 ,m5 ,−m15 ,m13 ,m46 ,m7)± ,

c± = ± (1
2m−1,67) }

χ±20 = { (m13 ,m4 ,m5 ,−m25 ,m2 ,m36 ,m7)± ,

c± = ± (1
2m1,67) }

χ±21 = { (m12 ,m34 ,m56 ,−m26 ,m23 ,m45 ,m67)± ,

c± = ± (1
2m1,7) }

χ±22 = { (m1 ,m25 ,m6 ,−m36 ,m3 ,m4 ,m57)± ,

c± = ± (1
2m12,7) }



χ±23 = { (m1 ,m24 ,m57 ,−m37 ,m3 ,m45 ,m6)± ,

c± = ± (1
2m12,−7) }

χ±24 = { (m12 ,m3 ,m47 ,−m27 ,m24 ,m5 ,m6)± ,

c± = ± (1
2m1,−7) }

χ±25 = { (m2 ,m3 ,m47 ,−m17 ,m14 ,m5 ,m6)± ,

c± = ∓ (1
2m1,7) }

χ±26 = { (m2 ,m34 ,m56 ,−m16 ,m13 ,m45 ,m67)± ,

c± = ± (1
2m−1,7) }

χ±27 = { (m23 ,m4 ,m5 ,−m15 ,m12 ,m36 ,m7)± ,

c± = ± (1
2m−1,67) }

χ±28 = { (m13 ,m4 ,m56 ,−m26 ,m2 ,m35 ,m67)± ,

c± = ± (1
2m1,7) }

χ±29 = { (m12 ,m35 ,m6 ,−m26 ,m23 ,m4 ,m57)± ,

c± = ± (1
2m1,7) }

χ±30 = { (m1 ,m25 ,m67 ,−m37 ,m3 ,m4 ,m56)± ,

c± = ± (1
2m12,−7) }

χ±31 = { (m12 ,m34 ,m57 ,−m27 ,m23 ,m45 ,m6)± ,

c± = ± (1
2m1,−7) }

χ±32 = { (m2 ,m34 ,m57 ,−m17 ,m13 ,m45 ,m6)± ,

c± = ∓ (1
2m1,7) }

χ±33 = { (m2 ,m35 ,m6 ,−m16 ,m13 ,m4 ,m57)± ,

c± = ± (1
2m−1,7) }



χ±34 = { (m23 ,m4 ,m56 ,−m16 ,m12 ,m35 ,m67)± ,

c± = ± (1
2m−1,7) }

χ±35 = { (m3 ,m4 ,m5 ,−m15 ,m1 ,m26 ,m7)± ,

c± = ± (1
2m−12,67) }

where (p, q, u; r, s, v)+ ≡ (r, s, v; p, q, u),

(p, q, u; r, s, v)− ≡ (p, q, u; r, s, v).

The Proof is constructive. We start with the

representation χ−1 , then by our procedure we

find the embedded representation χ−2 . Then

from the latter we find the embedded repre-

sentations χ−3 and χ−4 . We proceed to the last

case χ+
1 which is reducible only by the Knapp-

Stein operator intertwining it with its Lang-

lands dual χ−1 . ♦



Conclusion

On the example of the group SL(2n,R) we

started building a bridge between the Lang-

lands program and our approach to construc-

tion and classification of invariant differential

operators. We have obtained full new results

in the cases of sl(6,R) and sl(8,R).

Our paper opens the perspective of applica-

tions to many other groups, in particular, the

group SL(2n + 1,R) which looks similar but

has different families of intertwining differen-

tial operators - this work is already in progress.



Thank you for your attention!


