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1A version of this talk was given at the online conference "New Trends in
Mathematical Physics" at the Steklov Mathematical Institute, November 7-12,
2022. In the current version we have added a couple of comments and
viewpoints, and also added a reference.
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Desired properties

Finding a good substitute for the space of Schwartz functions in
a non-Archimedean setting has proved to be a challenge. Such
a function space should ideally satisfy the following
requirements2

1 It should be invariant under the Fourier transform F .
2 It should be invariant under the multiplication operator

(Qf )(x) = |x |pf (x).

3 It should contain the characteristic function of the integers
1Zp . This is because 1Zp in certain contexts plays the role
of the Gauss function (it is fixed under the Fourier
transform F), and because it is also a basic building block
for functions on Qp, .

2In the first part of this talk we confine our discussion to Qp. With
appropriate adjustments, the results are valid for any local field.
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Schwartz-Bruhat functions

A much used space of test functions is the Schwartz-Bruhat
space of locally constant functions with compact support. This
space is useful in many respects and satisfies conditions 1 and
3 above, but fails to satisfy condition 2. This limits its
usefulness in connection with differential equations.
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An unsuccessful attempt

At the Seventh International Conference on p-Adic
Mathematical Physics and its Applications, Covilhã, Portugal,
2019, we presented the following candidate for a
non-Archimedean Schwartz space (over Qn

p):

X(Qn
p) :=

⋂
m∈N0

S0,m(Qn
p),

where the S0,m(Qn
p),m = 1,2,3, · · · are weighted Feichtinger

algebras over Qn
p. This space has many nice properties; in

particular, it is a nuclear Fréchet space, and the
Schwartz-Bruhat functions are densely contained in it.
However, it suffers from the same defects as the
Schwartz-Bruhat space: It satisfies conditions 1 and 3 above,
but not condition 2.
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p-Adic Lizorkin spaces

In an article from 2006 [AKS06] S. Albeverio, A. Yu. Khrennikov
and V. M. Shelkovich introduced p-adic Lizorkin spaces. These
spaces are invariant under the fractional Vladimirov operator
Pα = FQαF∗. However, they are not invariant under the
Fourier transform.
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Countably Hilbert spaces

In [ZnG17] Zúñiga-Galindo introduced a space of test functions
which is invariant under the Vladimirov operator P = FQF∗.
However, it is not invariant under the Fourier transform.
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"No-go" theorem

The above unsuccessful attempts made us suspect that there
is a "no-go" theorem here. And, indeed, there is.
If we consider Qp as a locally compact group with its additive
structure, it turns out that it is impossible to find a non-trivial
space which satisfies all the requirements listed on slide 4 (cfr.
[Dig24]).

Theorem ("No-go")
If X ⊂ L2(Qp) is a vector space of functions that is invariant
under Q and F , then X can not contain a function of the form
1pkZp

for any k ∈ Z. Furthermore, if in addition X is invariant
under translation, then X can not contain a function of the form
1x+pkZp

for any x ∈ Qp, k ∈ Z.
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Proof.
Assume towards a contradiction that χpkZp

is an element in X .
In [VVZ94, Example 9, p.104] we can find the computation that
shows

FQχpkZp
(t) = (p + 1)−1

{
p1−2k if |t |p ≤ pk ,

−p2 |t |−2
p if |t |p > pk ,

t ∈ Qp.

Multiplying this by |t |2p shows that Q2FQχpkZp
is a function with

a constant non-zero value on the unbounded set
{t ∈ Qp : |t |p > pk}. We conclude that Q2FQχpkZp

/∈ L2(Qp).
This contradicts the supposed invariance of X ⊆ L2(Qp) under
F and Q. The furthermore part follows easily.
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Relaxing the requirements

Ways to get around the no-go theorem include giving up
invariance under Q, and replace Q with an operator which
behaves more favorably around the origin. This has been
explored by Haran [Har93] and later by Bechata [Bec04]. They
replace

Q : f (x) 7→ |x |f (x)

by the operator
f (x) 7→ max(1, |x |)f (x),

and with the aid of the latter they define a Schwartz space
which works well in their setting. However, we are unsure about
the physical usefulness, or significance, of this operator. But
then again, the same must be said about the operators we are
about to introduce in a multiplicative setting!
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The multiplicative group K×

Because of the "no-go" theorem above we have turned our
attention to the multiplicative group Q×

p = Qp \ {0}. It is still
locally compact, but no longer self-dual. Our candidate for a
space of test functions will be constructed from a family of
weighted modulation spaces (Feichtinger algebras). Although
some standard operators – such as the Vladimirov operator –
do not have an obvious interpretation in this setting, we define
a family of other operators which could be of physical and/or
mathematical interest.
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The additive group of a local field K

From now on we will work in a general local field K and follow
the notation in Taibleson’s book [Tai75].
O = {x ∈ K : |x | ≤ 1}: ring of integers in K .
µK : normalized Haar measure on K , µK (O) = 1.
P: the unique maximal ideal in O, P = {x ∈ K : |x | < 1}.
q: number of elements in the finite field O/P. We have q = pf ,
a power of a prime p.
p: fixed element of maximal absolute value in P. We have
|p| = q−1, and P = pO.
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The multiplicative group K× = K \ {0}
O∗ = {x ∈ K : |x | = 1}: the group of units in O. It is a compact
open subgroup of K×.
Any non-zero x ∈ K can be written uniquely as a product of the
form x = pk x ′ for some k ∈ Z and x ′ ∈ O∗. We have |x | = q−k .

The valuation v : K → Z ∪ {∞} is given by v(x) = k for x ̸= 0,
and one defines v(0) = ∞. For non-zero x ∈ K one finds
v(x) = − logq |x |.

The representation x = pk x ′ gives rise to an isomorphism of
topological groups K× ∼= Z×O∗ by

(k , x ′) ∈ Z×O∗ → pkx ′ ∈ K×.

The normalization of the Haar measure on (K ,+) yields
µK (O

∗) = 1 − q−1 and µK (P) = q−1.
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The Haar measure on K× and O∗

Up to scaling by a positive constant the Haar measure on K×,
µK× , is given by µK divided by | · |. We normalize it in the
canonical way so that µK×(O∗) = 1, and thus, for suitable
f : K× → C,∫

K×
f (x)dµK×(x)

(def)
=

q
q − 1

∫
K×

f (x) |x |−1 dµK (x) .

The Haar measure µO∗ on O∗ is the restriction of µK× to O∗,∫
O∗

f (x)dµO∗(x)
(def)
=

∫
O∗

f (x)dµK×(x) =
q

q − 1

∫
O∗

f (x)dµK (x) .

We can equally well describe the measure on K× through the
mentioned isomorphism K× ∼= Z×O∗ via the representation
x = pkx ′, k ∈ Z, x ′ ∈ O∗ and the product measure of µZ (the
counting measure) and µO∗ (as just defined):∫

K×
f (x)dµK×(x) =

∑
k∈Z

∫
O∗

f (pkx ′)dµO∗(x ′) .
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The dual group of O∗

Since O∗ is compact, its dual group Ô∗ is discrete. Set A0 = O∗

and An = 1 + pnO, n ∈ N. Then A0 ⊋ A1 ⊋ A2 ⊋ . . ., and the
(An)n≥0 form a fundamental system of neighborhoods of 1 in
K×. Let ξ′ ∈ Ô∗. Since ξ′ is continuous, it attains the constant
value 1 on An for some n ∈ {0,1,2, . . .}.
For each ξ′ ∈ Ô∗ we define its degree, deg(ξ′), to be the
smallest integer n for which this holds. We can thus define a
mapping deg : Ô∗ → N0. Note that
deg(ξ′1 · ξ′2) = max(deg(ξ′1), deg(ξ

′
2)). One finds

|{ξ′ ∈ Ô∗ : deg(ξ′) = 0}| = 1,

|{ξ′ ∈ Ô∗ : deg(ξ′) = 1}| = q − 2,

|{ξ′ ∈ Ô∗ : deg(ξ′) = k}| = qk−2 (q − 1)2 , k > 1, k ∈ N .
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Fourier analysis on O∗ and Ô∗ I
For an absolutely integrable function on the compact group O∗

its Fourier series, indexed by the discrete group Ô∗, is a
sequence that converges to zero at infinity computed via the
Fourier transform F : L1(O∗) → c0(Ô∗), for functions
f ∈ L1(O∗),

(
F f

)
(ξ′) =

∫
O∗

f (x ′) ξ′(x ′)dµO∗(x ′)

=
q

q − 1

∫
O∗

f (x ′) ξ′(x ′)dµK (x ′) , ξ′ ∈ Ô∗.

Similarly, to every sequence c ∈ ℓ1(Ô∗) we associate a
continuous function on O∗ through the inverse Fourier
transform F−1 : ℓ1(Ô∗) → C(O∗),(

F−1c
)
(x ′) =

∑
ξ′∈Ô∗

c(ξ′) ξ′(x ′), x ′ ∈ O∗.
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Fourier analysis on O∗ and Ô∗ II

If f ∈ L1(O∗) is continuous and such that the sequence
{F f (ξ′)}

ξ′∈Ô∗ belongs to ℓ1(Ô∗), then we can recover f
pointwise via

f (x ′) =
∑
ξ′∈Ô∗

F f (ξ′) ξ′(x ′) , x ′ ∈ O∗ .

As is true for any compact abelian group, and so also for O∗,
the elements of the dual group, i.e., the functions
{O∗ → C, x ′ 7→ ξ′(x ′)}

ξ′∈Ô∗ , form an orthonormal basis for
L2(O∗).
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The dual group of K×

The isomorphism of K× with Z×O∗ implies that the dual group
K̂× of K× is isomorphic to T× Ô∗. We make use of this
isomorphism and think of elements ξ ∈ K̂× as a pair ξ = (z, ξ′),
where z ∈ T and ξ′ ∈ Ô∗. We follow [Tai75] and abuse notation
and write ξ = z ξ′. We use multiplication to indicate the group
operation of K̂× and Ô∗, so that for ξ1 = z1 ξ

′
1 and ξ2 = z2 ξ

′
2 we

have ξ1ξ2 = z1 z2 ξ
′
1 ξ

′
2. In particular, this gives us the possibility

notationally to understand an element z ∈ T as an element in
K̂× simply by writing z ∈ K̂×, where we understand z = z e

Ô∗

and e
Ô∗ is the unit of Ô∗. The action of an element

ξ = z ξ′ ∈ K̂× on an x = pkx ′ ∈ K× is given by
ξ(x) = zk ξ′(x ′) = |x |−i arg(z)/ ln(q) ξ′(x ′), where ξ′(x ′) is the
action of an element ξ′ ∈ Ô∗ on an x ′ ∈ O∗

22 / 49



The Haar measure on K̂×

We equip K̂× with the product measure of the normalized
measure on T and the counting measure on Ô∗, so that, for
suitable functions g : K̂× → C,∫

K̂×
g(ξ)dµK̂×(ξ)

(def)
=

∑
ξ′∈Ô∗

∫
T

g(z ξ′)dµT(z)

=
∑
ξ′∈Ô∗

∫ 1

0
g(e2πiθ ξ′)dµL(θ)

23 / 49



Fourier analysis on K× and K̂× I

For functions on K× the Fourier transform acts as a continuous
operator from L1(K×) into C0(K̂×), so that for f ∈ L1(K×)

(
F f

)
(ξ) =

(
F f

)
(z ξ′) =

∫
K×

f (x) ξ(x)dµK×(x)

=

∫
K×

f (x) ξ′(x ′) |x |i arg(z)/ ln(q)−1 dµK×(x)

( x = pkx ′)

=
q

q − 1

∑
k∈Z

q−ikθ
∫
O∗

f (pkx ′) ξ′(x ′)dµK (x ′), ξ = (θ, ξ′)
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Fourier analysis on K× and K̂× II

Similarly, for functions on K̂× the inverse Fourier transform
maps continuously from L1(K̂×) into C0(K×), for g ∈ L1(K̂×)

(
F−1g

)
(x) =

(
F−1g

)
(pkx ′) =

∫
K̂×

g(ξ) ξ(x)dµK̂×(ξ)

=
ln(q)
2π

∑
ξ′∈Ô∗

ξ′(x ′)

∫ 2π
ln(q)

0
g(θ, ξ′) |x |−iθ dµR(θ)

The measures µK× and µK̂× are normalized such that the
Fourier inversion formula holds. That is, if f ∈ L1(K×) is
continuous and such that F f belong to L1(K̂×), then
F−1F f = f pointwise and similarly for g ∈ L1(K̂×). The Fourier
transform can be extended to a unitary operator between
L2(K×) and L2(K̂×) in the usual way.
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Translation and modulation on K× and K̂×

For t ∈ K× and ξ = zξ′ ∈ K̂× we define the translation operator
Tt and modulation operator Eξ that act on functions f : K× → C
through

Tt f (x) = f (x t−1) , Eξf (x) = ξ(x) f (x) = |x |−iθ ξ′(x ′) f (x),

x = pkx ′, k ∈ Z, x ′ ∈ O∗. Similarly, for τ ∈ K̂× and x ∈ K× the
translation operator Tτ and modulation operator Ex act on
functions g : K̂× → C through

Tτg(ξ) = g(ξτ−1) , Exg(ξ) = ξ(x)g(ξ) = |x |−iθ ξ′(x ′)g(ξ).
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If we let F be the Fourier transform from L1(K×) to C0(K̂×) and
F−1 be the inverse Fourier transform from L1(K̂×) to C0(K×)
observe that

F Eξ Tx = Tξ Ex−1 F and F−1 Ex Tξ = Tx−1 Eξ F−1

for x ∈ K×, ξ ∈ K̂× .
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Other operators to be studied in the multiplicative
setting

Although we are unsure of their physical interpretation, it might
be of interset to study the following operators in the
multiplicative setting. For functions f : K× → C

f (x) 7→ v(x)α f (x) , x ∈ K× , α > 0 , (1)
and f (x) 7→ |x |α f (x) , α ∈ R , (2)

and for functions g : K̂× → C operators such as

g(ξ) 7→ deg(ξ)α g(ξ) , ξ ∈ K̂× , α > 0 , (3)

and g(ξ) 7→ eα deg(ξ) g(ξ) , α ∈ R , (4)

where v : K× → Z is the valuation on the field K ,
| · | : K → R+

0 is its absolute value and deg : K̂× → N0 yields
the degree of ramification of a character ξ ∈ K̂×.3

3
By the expression deg(ξ) we mean the composite mapping

ξ = (z, ξ′) ∈ K̂× 7→ ξ′ ∈ Ô∗ 7→ deg(ξ′).
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But in order to study these operators, we need to define a
suitable space of test functions. This will be discussed on the
following slides.
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The weighted Feichtinger algebra

The construction of weighted Feichtinger algebras for locally
compact abelian groups that factor into a discrete and a
compact group such as K× and K̂× is straight-forward. On a
discrete group a weighted Feichtinger algebra coincides with a
weighted ℓ1-space. Similarly, a function on a compact abelian
group belongs to the weighted Feichtinger algebra exactly if its
Fourier series satisfies a weighted ℓ1-summability condition.
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We combine these requirements to a weighted summability
condition for a function f : K× → C as follows: For each k ∈ Z
consider the restriction fk of f to the coset pkO∗ of O∗ in K×.
We can think of fk as a function on O∗ and thus consider its
Fourier series F fk : Ô∗ → C. The function f belongs to the
(weighted) Feichtinger algebra on K× exactly if the combined
(weighted) sum of all Fourier coefficients of all the functions fk ,
k ∈ Z is absolutely convergent,∑

k∈Z

∑
ξ′∈Ô∗

|
(
F fk

)
(ξ′)|w(k , ξ′) < ∞,

where w : Z× Ô∗ → [1,∞) is some weight function.
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Definition
For a given weight-function w : Z× Ô∗ → [1,∞) the
w-weighted Feichtinger algebra on K×, S0,w (K×), consists
exactly of those functions f in L2(K×) that satisfy∑

k∈Z

∑
ξ′∈Ô∗

|⟨f ,Eξ′TpkχO∗⟩|w(k , ξ′) < ∞ .

The construction is mimicked in the setting of K̂×.

Definition
For a given weight-function w : Z× Ô∗ → [1,∞) the
w-weighted Feichtinger algebra over K̂×, S0,w (K̂×), consists
exactly of those functions f in L2(K̂×) that satisfy∑

k∈Z

∑
ξ′∈Ô∗

|⟨f ,Epk Tξ′χT⟩|w(k , ξ′) < ∞ .
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The unweighted case, e.g., w = 1, defines the Feichtinger
algebra S0(K×). This space in itself exhibits many convenient
properties, [Fei81, Jak18]. The weighted cases, w ̸= 1, inherit
these properties if the weight w is moderate with respect to a
sub-multiplicative weight m, or m-moderate for short, i.e.,

w(k1+k2, ξ
′
1·ξ′2) ≤ m(k1, ξ

′
1)w(k1, ξ

′
2) for all k1, k2 ∈ Z , ξ′1, ξ

′
2 ∈ Ô∗,

where m : Z → Ô∗ → [1,∞) is a sub-multiplicative weight:

m(k1+k2, ξ
′
1·ξ′2) ≤ m(k1, ξ

′
1)m(k1, ξ

′
2) for all k1, k2 ∈ Z , ξ′1, ξ

′
2 ∈ Ô∗.

Note that a sub-multiplicative weight m is itself m-moderate.
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Remark
The property of a weight to be sub-multiplicative and to be
moderate with respect to a sub-multiplicative weight is the key
in order for weighted function spaces on locally compact groups
to have invariance properties with respect to translation and
convolution [Fei79]. See especially [Grö07] and also
[Grö01, GS07].
Sub-multiplicative weights are, for example, products of
non-negative powers of the following functions on Z and Ô∗:

mpol : Z → [1,∞), mpol(k) = 1 + |k | , (5)

mexp : Z → [1,∞), mexp(k) = q|k | , (6)

m̃pol : Ô∗ → [1,∞), m̃pol(ξ
′) = 1 + deg(ξ′) , (7)

m̃exp : Ô∗ → [1,∞), m̃exp(ξ
′) = qdeg(ξ′) . (8)
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Theorem
For any LCA group G (in particular K×, K̂×) the unweighted
Feichtinger algebra S0(G) satisfies the following

1 S0(G) contains the Schwartz-Bruhat functions as a dense
subspace.

2 S0(G) is dense in, and continuously imbedded in, L1(G)
and (C0(G), || · ||∞).

3 The Fourier transform is an isometric isomorphism
between S0(G) and S0(Ĝ).

4 It is a Banach algebra w.r.t. convolution and products.
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In itself, the unweighted Feichtinger algebra presents itself with
a plethora of properties that promotes it to a practical Banach
space of test-functions. For example, it is invariant under
translation, it forms an algebra under convolution and pointwise
multiplication and it is continuously embedded into the
Lebesgue spaces. Moreover, the Fourier transform, mapping
functions on K× to functions on K̂×, is a continuous bijection
between this space on these groups.

37 / 49



However, it fails to be an advantageous domain for the
multiplication operators we already mentioned on slide 28, and
which we repeat here: For functions f : K× → C,

f (x) 7→ v(x)α f (x) , x ∈ K× , α > 0 , (9)
and f (x) 7→ |x |α f (x) , α ∈ R , (10)

and for functions g : K̂× → C operators such as

g(ξ) 7→ deg(ξ)α g(ξ) , ξ ∈ K̂× , α > 0 , (11)

and g(ξ) 7→ eα deg(ξ) g(ξ) , α ∈ R , (12)

where v : K× → Z is the valuation on the field K , | · | : K → R+
0

is its absolute value and deg : K̂× → N0 yields the degree of
ramification of a character ξ ∈ K̂×.
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The failure of the unweighted Feichtinger algebra to be a
well-suited domain for these operators is due to the fact that it
enforces no condition on the rate of decay towards zero at
infinity. An appropriately weighted Feichtinger algebra will
enforce control of its functions’ decay properties. The resulting
Fréchet space, constructed from these weighted spaces, will
then become invariant with respect to the multiplication
operators mentioned above.
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For α, β, γ, δ ≥ 0 consider the weight

mα,β,γ,δ : Z× D̂∗ → [1,∞)

(k , ξ′) 7→ mpol(k)α mexp(k)β m̃pol(ξ
′)γ m̃exp(ξ

′)δ.

Theorem
For α, β, γ, δ ≥ 0 the weighted Feichtinger algebras

S0,mα,β,γ δ
(K×) =

{f ∈ L2(K×) :
∑
k∈Z

∑
ξ′∈D̂∗

|⟨f ,Eξ′TpkχD∗⟩| · mα,β,γ,δ(k , ξ′) < ∞}

S0,mα,β,γ δ
(K̂×) =

{g ∈ L2(K̂×) :
∑
k∈Z

∑
ξ′∈D̂∗

|⟨g,Eξ′TpkχT⟩| · mα,β,γ,δ(k , ξ′) < ∞}

satisfy the following:
40 / 49



1 The Fourier transform is isometric isomorphism between
S0,mα,β,γ δ

(K×) and S0,mα,β,γ δ
(K̂×).

2 Both spaces form Banach algebras w.r.t. convolution and
products.

3 If α1 < α2, β1 < β2, γ1 < γ2, and δ1 < δ2, then
S0,mα2,β2,γ2,δ2

(K×) is a dense subspace of

S0,mα1,β1,γ1,δ1
(K×) and similarly for K̂×. In particular,

S0,mα,β,γ,δ
is a dense subspace of, and continuously

imbedded in, S0, L1 and C0.
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Let a,b, c,d ≥ 0. For functions f : K× → C consider the
operators

(Qa
polf )(x) = v(x)af (x), where v : K× → R is the valuation on K×.

(Qb
expf )(x) = |x |b, where | · | : K× → R is the absolute value on K×.

For functions g : K̂× → C consider the operators

(Q̃
c
polg)(ξ) = deg(ξ)cg(ξ)

(Q̃
d
expg)(ξ) = edeg(ξ)·dg(ξ)

where deg : K̂× → N0 is the degree of ramification of a ξ ∈ K̂×.
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Proposition
Let F be the Fourier transform from functions on K× to
functions on K̂×.

1 Qa
pol is a continuous operator from S0,mα+a,β,γ,δ(K

×) into
S0,mα,β,γ,δ

(K×).

2 Qb
exp is a continuous operator from S0,mα,β+b,γ,δ(K

×) onto
S0,mα,β,γ,δ

(K×).

3 F−1Q̃
c
polF is a continuous operator from S0,mα,β,γ+c,δ(K

×)
into S0,mα,β,γ,δ

(K×).

4 F−1Q̃
d
expF is a continuous operator from S0,mα,β,γ,δ+d (K

×)
onto S0,mα,β,γ,δ

(K×).

Similar statements hold for S0,mα,β,γ,δ
(K̂×).
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Theorem
Consider X(K×) = ∩n∈NS0,mn,n,n,n(K

×) and
X(K̂×) = ∩n∈NS0,mn,n,n,n(K̂×) with their natural topology induced
by the Banach spaces S0,mn,n,n,n(K

×) (resp. S0,mn,n,n,n(K̂×)).
1 Both spaces are Fréchet spaces, and they form dense

subspaces of, and are continuously imbedded in, any
S0,mα,β,γ δ

(K×) and in L1 and C0.
2 They are invariant under convolution and product.
3 The Fourier transform is an isometric isomorphism

between X(K×) and X(K̂×).
4 For any a,b, c,d ≥ 0:

X(K×) is invariant under Qa
pol, Qb

exp, F−1Q̃
c
polF , F−1Q̃

d
expF .

X(K̂×) is invariant under FQa
polF−1, FQb

expF−1, Q̃
c
pol, Q̃

d
exp.
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From a topological point of view, the spaces we construct
(induced from a norm or a countable family of such) are simpler
than the Schwartz-Bruhat space over K× and K̂× (the latter
requires taking an inductive limit of subspace topologies)
[Bru61, Osb75]. Actually, the Schwartz-Bruhat functions are a
proper subspace of, and densely contained in, some of the
spaces we have constructed. At the same time the convenient
properties of the Schwartz-Bruhat functions are all kept by our
spaces.
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In short, we have employed the framework for test- and
generalized- functions that the modulation spaces offer in the
setting of K× and K̂× in order to construct convenient Banach
and Fréchet spaces of test-functions. In contrast to the
Euclidean setting, the obtained Fréchet spaces do not coincide
with the Schwartz-Bruhat space.
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Outline

1 Space of test functions in a non-Archimedean setting
Desired properties
Some natural spaces with shortcomings
"No-go" theorem

2 Spaces of test functions based on the multiplicative structure
of a local field K

The multiplicative group K× = K \ {0}
Spaces of test functions based on weighted Feichtinger
algebras
Connections with Schrödinger-like operators?

3 References
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Schrödinger-like operators

In [AGK00] S. Albeverio, E. I. Gordon, and A. Yu. Khrennikov
introduced what they called Schrödinger-like operators on a
general locally compact Abelian group G. These are operators
of the form

A =

∫ ∫
G×Ĝ

(a(g) + b(χ))VχUgdµ(χ)dm(g),

where m is Haar measure on G, and µ is Haar measure on Ĝ,
dual to m; a and b are functions on G and Ĝ, respectively, with
0 ≤ a(g) and a(g) → ∞ when g → ∞. Ug is the shift operator
and Vχ the modulation operator: (Ug f )(h) = f (h − g),
(Vχf )(h) = χ(h)f (h), g,h ∈ G, χ ∈ Ĝ, f ∈ L2(G).
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Question

We end this talk with a question which might be worth pursuing:

Are the above introduced Feichtinger algebras well adapted to
Schrödinger-type operators? In other words, can they function
as test function spaces for this class of operators?
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