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Black holes & chaos

Fast scrambling (Susskind) ⇒ chaos bound (Maldacena, Shenker &
Stanford)

Black hole horizons imply strong chaos in dual holographic quantum
field theory (SYK model, Yang-Mills plasmas etc)

Near-horizon metric (AdS2 throat) and its SL(2,R) isometry imply
fast scrambling and maximum Lyapunov exponent 2πT

The same symmetry arguments lead to integrable geodesics in the
bulk (black hole geometry)

Qualitatively: integrable geodesics (AdS) ↔ maximum chaos (CFT)
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Black holes & microstates

Black hole must be a quantum many-body system in the Hilbert
space of quantum gravity

In string theory: black hole solutions – horizonful vs microstate
solutions – horizonless but look like a black hole from far away

Microstate program: Bena, Warner et al – impressive wealth of
solutions but problems persist (no holography etc)
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Black holes & averaging

Big question from the replica wormhole solution of the black hole
information paradox: are black holes ensemble-averaged solutions?

JT gravity (Saad, Shenker, Stanford, Iliesiu) and AdS3 gravity (Belin,
Perlmutter): ensemble average over theories

In higher dimension: unlikely, but perhaps ensemble average over
solutions or states

Exciting!

4 / 28



Black holes & averaging

Big question from the replica wormhole solution of the black hole
information paradox: are black holes ensemble-averaged solutions?

JT gravity (Saad, Shenker, Stanford, Iliesiu) and AdS3 gravity (Belin,
Perlmutter): ensemble average over theories

In higher dimension: unlikely, but perhaps ensemble average over
solutions or states

Exciting!

Does it explain black hole thermodynamics?

Does it relate smooth microstate solutions to black holes?
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Idea: check this picture on an explicit example

LLM solutions provide a controlled top-down stringy system where
one can perform averaging and check if the result is black-hole-like

Study the dynamics and statistics of geodesics

Do we obtain black-holish behavior after averaging?
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1 LLM solutions

2 Geodesic chaos in black & white geometries

3 Weak geodesic chaos and averaging in grayscale geometries
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1 LLM solutions
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LLM solution

Lin, Lunin & Maldacena 2004: Giant gravitons wrapped around
D-branes

Very simple dual matrix model: free fermion in 2D with a constraint,
solution specified by the Fermi surface

Metric:

ds2 = 1

h2
[ − (dt +Vadx

a)2 + h4 (dξ2 + dxadxa) +

+(1
2
− z)dΩ̃2

3 + (
1

2
+ z)dΩ2

3]

Two 3-spheres (Ω3 and Ω̃3) times the static (t, x1, x2, ξ) manifold:
SO(4) × SO(4) ×R

h2 = 1

ξ

√
1

4
− z2, ∂2

az + ξ∂ξ (
∂ξz

ξ
) = 0, ∂ξVa =

ϵab∂bz

ξ
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Black & white patterns and bubbling AdS

Finite curvature requires z = +1/2 (”black”) or z = −1/2 (”white”) in
the LLM plane ξ = 0: dual to particles/holes in 2D Fermi liquid
(Berenstein 2004)

Geometry of black & white patterns:
▸ Black disk – AdS
▸ Multi-disk patterns – bubbling AdS
▸ Black half-plane – pp-wave limit
▸ Small deformations (rings, droplets etc) – small fluctuations

A thing ring is roughly a giant graviton excitation
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Grayscale solutions

−1/2 < z < 1/2 ⇒ naked singularity – but a ”good” singularity a la
Gubser (can be enclosed by a horizon)

Matrix-wise: coarse-grained Young tableaux – smoothen the edges

Natural arena for averaging: we expect to get grayscale physics by
averaging over small deformations of black & white solutions
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2 Geodesic chaos in black & white
geometries
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Equations of motion

Geodesic Hamiltonian:

H = 1

2h2
[P2

ξ + (Px + EVx)2 + (Py + EVy)2 − h4 (E 2 − 2L2

1 − 2z −
2L̃2

1 + 2z )]

Integrals of motion: E on (ξ, x1, x2) and the full set of angular
momenta on 3-spheres

Two representative configurations: disk+ring and 3-disk

Both are nonintegrable but disk+ring has Pϕ as an extra integral of
motion ⇒ 2 degrees of freedom instead of 2 and a half
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Backgrounds and geodesics

Disk+ring background and geodesic 3 disks background and geodesic

Two representative configurations: disk+ring and 3-disk

Both are nonintegrable but disk+ring has Pϕ as an extra integral of
motion ⇒ 2 degrees of freedom instead of 2 and a half
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Chaos in disk+ring case

2000

4000

6000

8000

4000

5000

6000

7000

8000

Disk+ring: typical mixed
phase-space with remnants of KAM
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3 disks: KAM tori still present but do
not present a barrier (3 degrees of
freedom)

Sticky trajectories provide trapping and mimic the black hole behavior

Measure of sticky trajectories µ defines the surface gravity and
effective temperature as

2πTeff = µ
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Escape rates and the fractal structures
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Disk+ring: several populations with
different escape rates γ1, γ2, γ3, γ4,
plus sticky trajectories with very slow
(subexponential) escape.
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3 disks: uniform escape rate γ.
Sticky trajectories are still present
but do not divide the phase space
into disjoint populations.

Expect multifractal scaling for disk+ring

The difference will be important later for averaging
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Escape rates and the fractal structures
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Multifractal spectrum for disk+ring with 4 exponents
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Photon ring?

For a black hole: the only unstable periodic orbit at r = r∗, positive
Lyapunov exponent but no chaos (no skeleton of unstable periodic
orbits)

Cardoso et al: Lyapunov exponent on the photon ring determines the
real part of the quasi-normal mode spectrum for n≫ 1

Here: chaotic dynamics, infinite skeleton of unstable periodic orbits
⇒ photon ring has no special significance

For simplicity consider only in-plane dynamics: ξ = Pξ = 0
WKB approximation:

Q(E∗, r∗)√
2Q ′′(r∗,E∗)

= −ı(n + 1

2
) , n ∈ N

En = − (2n + 1)
√
Q ′′(r∗,E∗)

∂EQ(r∗,E∗)
√
2

When the dust settles: En = E∗ − ı(2n + 1)λ – the Cardoso relation
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Photon ring insignificant for the Lyapunov spectrum

Lyapunov exponent (left) and the Pesin relation for the sum of positive
Lyapunov exponents Λ, Kolmogorov-Sinai entropy hKS and escape rate γ
(right):

Λ ≡ ∑
λi>0

λi = hKS + γ
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At the photon ring we have λ∗ ≈ 0.001 – much less than the typical
exponent
Cardoso relation remains but it does not influence dynamics and
presumably observable quantities
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Horizonless microstates do not mimic black holes

Chaos in geodesic motion leads to (observable) differences with
respect to black holes

Trapping is reproduced but but photon rings no

The bottom line: microstates do not look like black holes in terms of
geodesics
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3 Weak geodesic chaos in black &
white geometries
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Grayscale geodesics

Same Hamiltonian ⇒ still nonintegrable. But different z function
leads to a potential well which is never present in black & white:

Veff;BW(ξ) =
J2−Θ(ρ − Ri) + J2+Θ(Ri − ρ)

ξ2
≥ 0

Veff;gray(ξ) =
−(E2 )

2 (1 − g2) + J2−+J2+
2

g
2
(J2− − J2+) sgn(ρ − Ri)

ξ2

Now both escapes and captures by the singularity are possible

Despite nonintegrability the dynamics are now much simpler
⇒ ∑λi>0 λi ≈ γ + γs , hKS almost zero
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Grayscale escape rates

Now both escapes and captures by the singularity are possible

Left: escape/capture rate for black & white (blue) vs gray (red)

Right: the photon ring separates captures (r < r∗) and escapes (r > r∗)
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Despite nonintegrability the grayscale dynamics are much simpler
⇒ ∑λi>0 λi ≈ γ + γs , hKS almost zero

Smooth escape rate dependence, no fractal structure

The photon ring is again observable and crucial: separates captures
from escapes

More black-holish than black & white
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Averaged black & white geodesics vs. gray geodesics

Disk + multiring + ring vs. disk + gray area + ring

Gray background = average of black & white backgrounds with
appropriate averaged (gray) flux g
Does the same hold for geodesics?
Idea: generate an ensemble of disk + multiring + ring backgrounds,
compute geodesics, average them over the ensemble 24 / 28



Averaged black & white geodesics vs. gray geodesics

For small timescales (t < ts): perfect agreement xµgray(t) = ⟨xµBW(t)⟩
Averaging over orbits is roughly equivalent: xµgray(t) = x̄µBW(t), also
for t < ts
For longer timescales: no notion of averaging

Same story for averages over Euclidean wormholes: self-averaging for
t < 1/2πT
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Averaged black & white potential vs. gray potential

Gaussian ensemble of disk + multiring + ring solutions

Partition function for 2N + 1 disks:

Z = πN−1

(M+M−)
N−1
2

2N−1
∏
j=2

e

R2
j ;0

4σ2M(−1)j
⎡⎢⎢⎢⎢⎣
1 −Erf

⎛
⎝

Rj ;0

2σ
√
M(−1)j

⎞
⎠

⎤⎥⎥⎥⎥⎦
Averaged effective potential:

⟨Veff(ξ)⟩ =
1

2ξ2 ∫ dλe−ıλΣ−
2N−1
∑
j=2

Aj

Z1;(j)

Aj

Z1;(j)
=
(J2− + J2+)Erf (xj + ρ

√
M(−1)j ) + J2+ − J2−Erf(xj)

1 −Erf(xj)

xj ≡
Rj ;0

2σ
√
M(−1)j

26 / 28



Averaged black & white potential vs. gray potential
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Effective potential (disk+rings):
black – microscopic; red – average
over ensembles of disk patterns;
orange – grayscale
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Same as left for the 3-disk
configuration
No AdS asymptotics, bubbles with
flat asymptotics

Averaged potential has a potential well of depth ⟨minVeff;BW⟩ = −Es ;
always Es < Eg =minVeff;gray

Self-averaging epoch: ta ∼ h̵/Es ∼ N2/Es
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Conclusions
Black & white LLM microstates vs gray LLM states vs black holes:
no horizon and geodesic chaos vs naked singularity and weak chaos vs
horizon and integrable geodesics

To Do: Check that dual CFT (matrix model) exhibits no fast
scrambling

Geodesic dynamics and trapping are self-averaging quantities at short
enough time scales (shown analytically for Veff !)

To Do: Lessons from JT suggest that averaging is a consequence of
UV incompleteness (inserting UV branes eliminates the need for
averaging). Is it true also here?
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