Ensemble averaging, singularities and LLM geometries

Mihailo Čubrović with David Berenstein and Vladan Djukić

Institute of Physics Belgrade

May 2025

Black holes & chaos

- Fast scrambling (Susskind) ⇒ chaos bound (Maldacena, Shenker & Stanford)
- Black hole horizons imply strong chaos in dual holographic quantum field theory (SYK model, Yang-Mills plasmas etc)
- Near-horizon metric (AdS₂ throat) and its $SL(2,\mathbb{R})$ isometry imply fast scrambling and maximum Lyapunov exponent $2\pi T$
- The same symmetry arguments lead to integrable geodesics in the bulk (black hole geometry)
- Qualitatively: integrable geodesics (AdS) \leftrightarrow maximum chaos (CFT)

Black holes & microstates

- Black hole must be a quantum many-body system in the Hilbert space of quantum gravity
- In string theory: black hole solutions horizonful vs microstate solutions – horizonless but look like a black hole from far away
- Microstate program: Bena, Warner et al impressive wealth of solutions but problems persist (no holography etc)

Black holes & averaging

- Big question from the replica wormhole solution of the black hole information paradox: are black holes ensemble-averaged solutions?
- JT gravity (Saad, Shenker, Stanford, Iliesiu) and AdS₃ gravity (Belin, Perlmutter): ensemble average over *theories*
- In higher dimension: unlikely, but perhaps ensemble average over solutions or states
- Exciting!

Black holes & averaging

- Big question from the replica wormhole solution of the black hole information paradox: are black holes ensemble-averaged solutions?
- JT gravity (Saad, Shenker, Stanford, Iliesiu) and AdS₃ gravity (Belin, Perlmutter): ensemble average over *theories*
- In higher dimension: unlikely, but perhaps ensemble average over solutions or states
- Exciting!
- Does it explain black hole thermodynamics?
- Does it relate smooth microstate solutions to black holes?

Idea: check this picture on an explicit example

- LLM solutions provide a controlled top-down stringy system where one can perform averaging and check if the result is black-hole-like
- Study the dynamics and statistics of geodesics
- Do we obtain black-holish behavior after averaging?

LLM solutions

2 Geodesic chaos in black & white geometries

3 Weak geodesic chaos and averaging in grayscale geometries

1 LLM solutions

LLM solution

- Lin, Lunin & Maldacena 2004: Giant gravitons wrapped around D-branes
- Very simple dual matrix model: free fermion in 2D with a constraint, solution specified by the Fermi surface
- Metric:

$$ds^{2} = \frac{1}{h^{2}} \left[-(dt + V_{a}dx^{a})^{2} + h^{4} (d\xi^{2} + dx_{a}dx^{a}) + \left(\frac{1}{2} - z\right) d\tilde{\Omega}_{3}^{2} + \left(\frac{1}{2} + z\right) d\Omega_{3}^{2} \right]$$

Two 3-spheres $(\Omega_3$ and $\tilde{\Omega}_3)$ times the static (t, x_1, x_2, ξ) manifold: $SO(4) \times SO(4) \times \mathbb{R}$

$$h^2 = \frac{1}{\xi} \sqrt{\frac{1}{4} - z^2}, \quad \partial_a^2 z + \xi \partial_\xi \left(\frac{\partial_\xi z}{\xi}\right) = 0, \quad \partial_\xi V_a = \frac{\epsilon_{ab} \partial_b z}{\xi}$$

Black & white patterns and bubbling AdS

- Finite curvature requires z = +1/2 ("black") or z = -1/2 ("white") in the LLM plane $\xi = 0$: dual to particles/holes in 2D Fermi liquid (Berenstein 2004)
- Geometry of black & white patterns:
 - Black disk AdS
 - Multi-disk patterns bubbling AdS
 - ▶ Black half-plane pp-wave limit
 - Small deformations (rings, droplets etc) small fluctuations
- A thing ring is roughly a giant graviton excitation

Grayscale solutions

- $-1/2 < z < 1/2 \Rightarrow$ naked singularity but a "good" singularity a la Gubser (can be enclosed by a horizon)
- Matrix-wise: coarse-grained Young tableaux smoothen the edges
- Natural arena for averaging: we expect to get grayscale physics by averaging over small deformations of black & white solutions

2 Geodesic chaos in black & white geometries

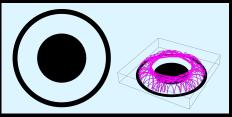
Equations of motion

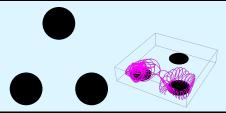
Geodesic Hamiltonian:

$$\mathcal{H} = \frac{1}{2h^2} \left[P_{\xi}^2 + (P_x + EV_x)^2 + (P_y + EV_y)^2 - h^4 \left(E^2 - \frac{2L^2}{1 - 2z} - \frac{2\tilde{L}^2}{1 + 2z} \right) \right]$$

- Integrals of motion: E on (ξ, x_1, x_2) and the full set of angular momenta on 3-spheres
- Two representative configurations: disk+ring and 3-disk
- Both are nonintegrable but disk+ring has P_{ϕ} as an extra integral of motion \Rightarrow 2 degrees of freedom instead of 2 and a half

Backgrounds and geodesics



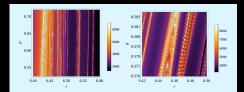


Disk+ring background and geodesic

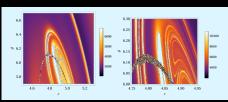
3 disks background and geodesic

- Two representative configurations: disk+ring and 3-disk
- Both are nonintegrable but disk+ring has P_{ϕ} as an extra integral of motion \Rightarrow 2 degrees of freedom instead of 2 and a half

Chaos in disk+ring case



Disk+ring: typical mixed phase-space with remnants of KAM tori and the chaotic sea

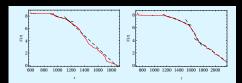


3 disks: KAM tori still present but do not present a barrier (3 degrees of freedom)

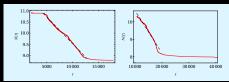
- Sticky trajectories provide trapping and mimic the black hole behavior
- Measure of sticky trajectories μ defines the surface gravity and effective temperature as

$$2\pi T_{\rm eff} = \mu$$

Escape rates and the fractal structures



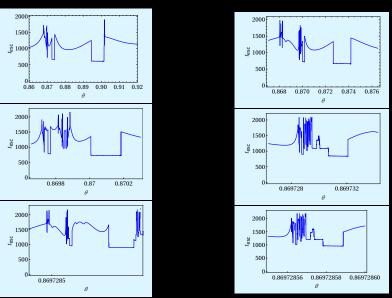
Disk+ring: several populations with different escape rates $\gamma_1, \gamma_2, \gamma_3, \gamma_4$, plus sticky trajectories with very slow (subexponential) escape.



3 disks: uniform escape rate γ . Sticky trajectories are still present but do not divide the phase space into disjoint populations.

- Expect multifractal scaling for disk+ring
- The difference will be important later for averaging

Escape rates and the fractal structures



Multifractal spectrum for disk+ring with 4 exponents

Photon ring?

- For a black hole: the only unstable periodic orbit at $r = r_*$, positive Lyapunov exponent but no chaos (no skeleton of unstable periodic orbits)
- Cardoso et al: Lyapunov exponent on the photon ring determines the real part of the quasi-normal mode spectrum for $n \gg 1$
- Here: chaotic dynamics, infinite skeleton of unstable periodic orbits
 photon ring has no special significance
- For simplicity consider only in-plane dynamics: $\xi = P_{\xi} = 0$
- WKB approximation:

$$\frac{Q(E_*, r_*)}{\sqrt{2Q''(r_*, E_*)}} = -i\left(n + \frac{1}{2}\right), \quad n \in \mathbb{N}$$

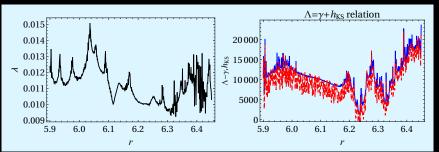
$$E_n = -(2n+1)\frac{\sqrt{Q''(r_*, E_*)}}{\partial_E Q(r_*, E_*)\sqrt{2}}$$

• When the dust settles: $E_n = E_* - i(2n+1)\lambda$ – the Cardoso relation

Photon ring insignificant for the Lyapunov spectrum

Lyapunov exponent (left) and the Pesin relation for the sum of positive Lyapunov exponents Λ , Kolmogorov-Sinai entropy $h_{\rm KS}$ and escape rate γ (right):

$$\Lambda \equiv \sum_{\lambda i > 0} \lambda_i = h_{\rm KS} + \gamma$$



- At the photon ring we have $\lambda_*\approx 0.001$ much less than the typical exponent
- Cardoso relation remains but it does not influence dynamics and presumably observable quantities

Horizonless microstates do not mimic black holes

- Chaos in geodesic motion leads to (observable) differences with respect to black holes
- Trapping is reproduced but but photon rings no
- The bottom line: microstates do not look like black holes in terms of geodesics

3 Weak geodesic chaos in black & white geometries

Grayscale geodesics

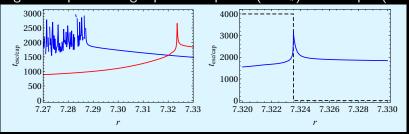
• Same Hamiltonian \Rightarrow still nonintegrable. But different z function leads to a potential well which is never present in black & white:

$$\begin{split} V_{\rm eff;BW}(\xi) &= \frac{J_{-}^2\Theta(\rho-R_i)+J_{+}^2\Theta(R_i-\rho)}{\xi^2} \geq 0 \\ V_{\rm eff;gray}(\xi) &= \frac{-(\frac{E}{2})^2\left(1-g^2\right)+\frac{J_{-}^2+J_{+}^2}{2}\frac{g}{2}\left(J_{-}^2-J_{+}^2\right)\mathrm{sgn}(\rho-R_i)}{\xi^2} \end{split}$$

- Now both escapes and captures by the singularity are possible
- Despite nonintegrability the dynamics are now much simpler $\Rightarrow \sum_{\lambda_i>0} \lambda_i \approx \gamma + \gamma_s$, $h_{\rm KS}$ almost zero

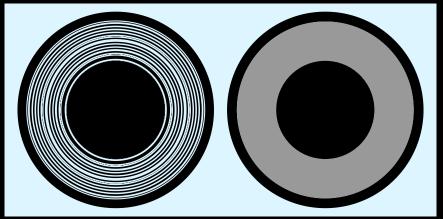
Grayscale escape rates

- Now both escapes and captures by the singularity are possible
- Left: escape/capture rate for black & white (blue) vs gray (red)
- Right: the photon ring separates captures $(r < r_*)$ and escapes $(r > r_*)$



- Despite nonintegrability the grayscale dynamics are much simpler $\Rightarrow \sum_{\lambda_i>0} \lambda_i \approx \gamma + \gamma_s$, $h_{\rm KS}$ almost zero
- Smooth escape rate dependence, no fractal structure
- The photon ring is again observable and crucial: separates captures from escapes
- More black-holish than black & white

Averaged black & white geodesics vs. gray geodesics

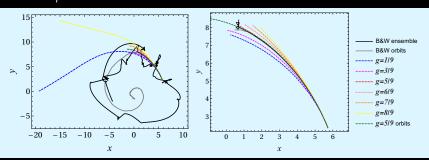


Disk + multiring + ring vs. disk + gray area + ring

- Gray background = average of black & white backgrounds with appropriate averaged (gray) flux g
- Does the same hold for geodesics?
- Idea: generate an ensemble of disk + multiring + ring backgrounds,
 compute geodesics, average them over the ensemble

Averaged black & white geodesics vs. gray geodesics

- For small timescales $(t < t_s)$: perfect agreement $\chi^{\mu}_{
 m gray}(t)$ = $\langle \chi^{\mu}_{
 m BW}(t)
 angle$
- Averaging over orbits is roughly equivalent: $x_{\rm gray}^{\mu}(t) = \bar{x}_{\rm BW}^{\mu}(t)$, also for $t < t_s$
- For longer timescales: no notion of averaging
- Same story for averages over Euclidean wormholes: self-averaging for $t < 1/2\pi\,T$



Averaged black & white potential vs. gray potential

- ullet Gaussian ensemble of disk + multiring + ring solutions
- Partition function for 2N + 1 disks:

$$Z = \frac{\pi^{N-1}}{\left(M_{+}M_{-}\right)^{\frac{N-1}{2}}} \prod_{j=2}^{2N-1} e^{\frac{R_{j;0}^{2}}{4\sigma^{2}M}(-1)^{j}} \left[1 - \operatorname{Erf}\left(\frac{R_{j;0}}{2\sigma\sqrt{M_{(-1)^{j}}}}\right)\right]$$

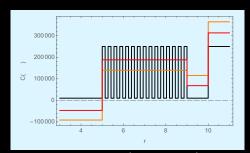
Averaged effective potential:

$$\langle V_{\text{eff}}(\xi) \rangle = \frac{1}{2\xi^{2}} \int d\lambda e^{-\imath \lambda \Sigma_{-}} \sum_{j=2}^{2N-1} \frac{A_{j}}{Z_{1;(j)}}$$

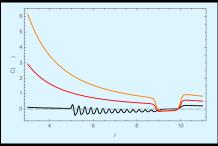
$$\frac{A_{j}}{Z_{1;(j)}} = \frac{\left(J_{-}^{2} + J_{+}^{2}\right) \operatorname{Erf}\left(x_{j} + \rho \sqrt{M_{(-1)^{j}}}\right) + J_{+}^{2} - J_{-}^{2} \operatorname{Erf}(x_{j})}{1 - \operatorname{Erf}(x_{j})}$$

$$x_{j} \equiv \frac{R_{j;0}}{2\sigma \sqrt{M_{(-1)^{j}}}}$$

Averaged black & white potential vs. gray potential



Effective potential (disk+rings): black – microscopic; red – average over ensembles of disk patterns; orange – grayscale



Same as left for the 3-disk configuration
No AdS asymptotics, bubbles with flat asymptotics

- Averaged potential has a potential well of depth $\langle \min V_{\rm eff;BW} \rangle = -E_s$; always $E_s < E_g = \min V_{\rm eff;gray}$
- Self-averaging epoch: $t_a \sim \hbar/E_s \sim N^2/E_s$

Conclusions

- Black & white LLM microstates vs gray LLM states vs black holes: no horizon and geodesic chaos vs naked singularity and weak chaos vs horizon and integrable geodesics
- To Do: Check that dual CFT (matrix model) exhibits no fast scrambling
- Geodesic dynamics and trapping are self-averaging quantities at short enough time scales (shown analytically for $V_{\rm eff}$!)
- To Do: Lessons from JT suggest that averaging is a consequence of UV incompleteness (inserting UV branes eliminates the need for averaging). Is it true also here?