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SUMMARY

We investigate a Schwarzschild metric exhibiting a signature 
change across the event horizon, which gives rise to what we 
term a Lorentzian-Euclidean black hole. The resulting geometry 
is regularized employing the Hadamard partie finie technique, 
which allows us to prove that the metric represents a solution of 
vacuum Einstein equations. In this framework, we introduce the 
concept of atemporality as the dynamical mechanism responsible 
for the transition from a regime with a real-valued time variable 
to a new one featuring an imaginary time. We show that this 
mechanism prevents the occurrence of the   singularity and 
discuss that, thanks to the regularized Kretschmann invariant, 
the atemporality can be considered as a characteristic feature of 
this black hole. 
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SIGNATURE-CHANGING METRICS 
• Metrics whose signature changes from  Lorentzian to  Euclidean one 

and vice versa:

-Studied in classical and quantum General Relativity (GR)

• Quantum GR:

- Quantum cosmology

-Loop quantum cosmology

-Supergravity and String theory
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Hartle-Hawking no-boundary conditions

Linde proposal

Vilenkin proposal (tunneling from nothing)



SIGNATURE-CHANGING METRICS 
• Classical GR: 

-Not forbidden by Einstein field equations

-Homogeneous and isotropic 
Friedmann-Lemaître-Robertson-Walker geometries

i. Similar properties with quantum scenarios satisfying the Hartle-
Hawking no-boundary conditions

ii. Related to the  tunneling solutions of the Wheeler-DeWitt equation in 
Quantum Cosmology
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JUNCTION CONDITIONS AND THIN SHELLS 
• Joining two metrics at a common boundary, which divides the spacetime 

into two distinct regions

Israel-Barrabes formalism (metrics with unchanging signature)
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𝑛! = 𝛼𝜕!ℓ𝑔!"
#

𝑔!"
$

Σ is timelike (𝛼 = 1)
or spacelike (𝛼 = −1)

The same coordinates 𝑦!
settled on both sides of Σ

metric in 
coordinates 𝑥"

(𝑎, 𝑏 = 1,2,3)

ℓ = 0

ℓ > 0

ℓ < 0

𝑔,- = Θ(ℓ)𝑔,-. +Θ(−ℓ)𝑔,-/



JUNCTION CONDITIONS AND THIN SHELLS 
What conditions have to be imposed on the metric so that 𝑔!" gives a
distribution-valued solution of Einstein field equations?

Junction conditions that involve three-tensors on Σ

In our hypotheses      [𝑛!] = [𝑥!] = [𝑦#] = 0

𝑔$%,' = Θ(ℓ)𝑔$%,'( + Θ(−ℓ)𝑔$%,') + 𝛼𝛿(ℓ)[𝑔$%]𝑛'
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Jump discontinuity of any tensorial quantity 𝐹 across Σ[𝐹]: = 𝐹|! − 𝐹|"
[𝐹] = 0 𝐹 is continuous at  Σ

[𝐹] ≠ 0 𝐹 is discontinuous across Σ; 
[𝐹] is the jump discontinuity of 𝐹across Σ



JUNCTION CONDITIONS AND THIN SHELLS 
• First junction condition: the metric is continuous across Σ

Metric tangential derivatives are also continuous, but the   normal       
derivatives are not:
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[𝑔()] = 0 [ℎ#$] = 0
In the coordinate

system 𝑥# Induced metric (coordinate 𝑦!) coordinate-invariant statement

[𝑔"#,%] = 𝜅"#𝑛%



JUNCTION CONDITIONS AND THIN SHELLS 
• 𝛿-function part of the Riemann tensor

• 𝛿-function part of the Ricci tensor

• 𝛿-function part of the Ricci scalar
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𝐴#%&
" =

𝛼
2
𝜅&
"𝑛#𝑛% − 𝜅%"𝑛#𝑛& − 𝜅#&𝑛"𝑛% + 𝜅#%𝑛"𝑛&

𝐴"# ≡ 𝐴"!#
! =

𝛼
2
𝜅!"𝑛!𝑛# + 𝜅!#𝑛!𝑛" − 𝜅!

!𝑛"𝑛# − 𝛼𝜅"#

𝐴 ≡ 𝐴"" = 𝛼 𝜅!'𝑛!𝑛' − 𝛼𝜅!
!



JUNCTION CONDITIONS AND THIN SHELLS 
Einstein field equations give the following expression for the 
stress-energy tensor: 

The 𝛿-function term of 𝑇!" is associated with the 
presence of a thin distribution of matter, which is referred 

to as surface layer or thin shell

The stress-energy tensor of the thin shell is 𝑆!"
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𝑇%& = 𝜃(ℓ)𝑇%&
! + 𝜃(−ℓ)𝑇%&

" + 𝛿(ℓ)𝑆%& with 8𝜋𝑆"# = 𝐴"# −
(
)
𝐴𝑔"#



JUNCTION CONDITIONS AND THIN SHELLS 
Explicitly, the thin shell stress-energy tensor depends on the jump 
discontinuity of the extrinsic curvature tensor 𝐾#, of Σ:

• Second junction condition: [𝐾#,] = 0, which implies 𝐴"'-
! = 0

When junction conditions are satisfied, then the two metrics 𝑔$%±

can be joined smoothly through Σ
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𝑆*+ = −
𝛼
8𝜋

[𝐾*+] − [𝐾]ℎ*+



JUNCTION CONDITIONS AND THIN SHELLS 
• When Σ is either spacelike or timelike, then only the Ricci part of 

the Riemann tensor can show a distributional singularity

• When Σ is null, then both the Ricci and Weyl part of the Riemann 
tensor can present Dirac-delta singularities
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Thin shell Impulsive gravitational wave



LORENTZIAN-EUCLIDEAN BLACK HOLE 
Lorentzian-Euclidean Schwarzschild metric in standard  
coordinates {𝑡, 𝑟, 𝜃, 𝜙}
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H(0)=1/2Sign function Step function

where



LORENTZIAN-EUCLIDEAN BLACK HOLE 
Therefore, the spacetime manifold is divided as 𝑉 = 𝑉( ∪ 𝑉) and 

• 𝜀 = 1 if 𝑟 > 2𝑀: Lorentzian signature (−++ +)

• 𝜀 = 0 if 𝑟 = 2𝑀: metric is degenerate det𝑔$% = 0

• 𝜀 = −1 if 𝑟 < 2𝑀: metric has an Euclidean structure and  
attains ultrahyperbolic signature  (−−+ +)

• Σ: 𝑟 = 2𝑀 change surface (null hypersurface)

• Metric and its derivatives are discontinuous across the change 
surface
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[𝑔"#] ≠ 0 [𝑔"#,!] ≠ 0



LORENTZIAN-EUCLIDEAN BLACK HOLE 
Metric in Gullstrand-Painlevé coordinates (𝒯, 𝑟, 𝜃, 𝜙)

The only pathology is related to the fact that the metric becomes 
degenerate on the change surface Σ, i.e., when 𝑟 = 2𝑀 and 𝜀 = 0
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THE REGULARIZATION PROCESS 
Recall that [𝑔!"] ≠ 0 and [𝑔!",$] ≠ 0 first junction 
condition  cannot be satisfied 

• Dirac-delta-like contributions arising in the Riemann tensor

• Terms proportional to 𝜀/, (𝜀/)0, 𝜀// ⇒ Linear and quadratic terms 
in the Dirac-delta function 𝛿(𝑟 − 2𝑀) in the Riemann tensor

Proper regularization scheme
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THE REGULARIZATION PROCESS 
• Smooth approximation of 𝜀(𝑟) = 2𝐻(1 − 2𝑀/𝑟) − 1: 
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𝜀(𝑟) =
𝑟 − 2𝑀 (/()./()

𝑟 − 2𝑀 ) + 𝜌 (/)()./() ,
𝜌/𝑀): small positive quantity

𝜅: positive integer

𝜌 = 0.1𝑀$: red curve
𝜌 = 0.01𝑀$: blue curve
𝜌 = 0.001𝑀$: green curve

The smaller ⁄𝜌 𝑀), 
the sharper 𝜀(𝑟)

𝑀 = 1, 𝜅 = 1



THE REGULARIZATION PROCESS 
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The larger 𝜅,  the 
steeper 𝜀(𝑟)

𝜅 = 0: red curve
𝜅 = 1: blue curve
𝜅 = 2: purple curve
𝜅 = 3: green curve

𝑀 = 1, 𝜌 = 0.1𝑀"

We will see that our regularization scheme requires 𝜅 ≥ 1



THE REGULARIZATION PROCESS 
• The Riemann tensor contains linear-in-delta ill-defined terms of the 

type

Hadamard partie finie regularization method & approximation of 𝜀(𝑟)
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∫ d𝑟
𝛿 𝑟 − 2𝑀

𝜀(𝑟)
,

&(1)
|1|%

≡ 0, 𝑛: positive integer
𝑥: = 𝑟 − 2𝑀



THE REGULARIZATION PROCESS 
• Let 𝐹(𝜉; 𝑎) be a function of 𝜉 which diverges as 𝜉 approaches 
𝑎. We assume that near 𝜉 = 𝑎

• The function diverges as 𝑠)1%&' when 𝜉 → 𝑎 and has no well-
defined value at 𝜉 = 𝑎

• We can regularize it by extracting its partie finie at the singular 
point 𝜉 = 𝑎, which is defined by
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𝐹(𝜉; 𝑎) = ∑
345

3&'(
𝑠63𝑓3(𝑠; 𝑎) + O(𝑠), 𝑠 = |𝜉 − 𝑎|

⟨𝐹⟩(𝑎): = (
)7
∫
5

)7
𝑓5(𝑠; 𝑎)d𝜃

Angular average of the zeroth
term 𝑓5(𝑠; 𝑎) of the Laurent series



THE REGULARIZATION PROCESS 
• The partie finie can be used to make sense of the product of 
𝐹with the delta function 𝛿(𝜉 − 𝑎), since we declare that

• In our case
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𝐹(𝜉; 𝑎)𝛿(𝜉 − 𝑎) ≡ ⟨𝐹⟩(𝑎)𝛿(𝜉 − 𝑎)

∫ 𝐹(𝜉; 𝑎)𝛿(𝜉 − 𝑎)d𝜉 = ⟨𝐹⟩(𝑎)

&(1)
|1|%

≡ 0,

𝐹 = |𝑥|63: = |𝑟 − 2𝑀|63

⟨𝐹⟩ = 0



THE REGULARIZATION PROCESS 
• Quadratic-in-delta ill-defined terms occurring 

in the Riemann tensor

Regularized within our model since 
their coefficients vanish when 𝑟 = 2𝑀

Sad Riemann                   Terms as 𝛿0(𝑟 − 2𝑀) give                     Happy Riemann

vanishing contribution in the distributional
sense to the Riemann tensor 
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THE REGULARIZATION PROCESS 
• An example: regularization of 𝑅2𝒯22

𝑅2𝒯22

=
𝑀
𝑟
𝑟0(2𝑀 − 𝑟)𝜀/0 + 2𝑟𝜀 𝑟(𝑟 − 2𝑀)𝜀// + 3𝑀𝜀/ − 8𝑀𝜀0

2 2𝑟4𝜀 ⁄4 0

-Terms linear in 𝜀/(𝑥) yield an integral proportional to (𝑥: = 𝑟 − 2𝑀)

∫ d𝑥
𝛿(𝑥)
𝜀 ⁄( ) = ∫ d𝑥𝛿(𝑥)

𝑥) + 𝜌 (/9()./()

𝑥(/)()./()

= ∫ d𝑥
𝛿(𝑥)

𝑥:𝑥(/)()./()
𝑥: 𝑥) + 𝜌 (/9()./()

24

𝛿(𝑥)/|𝑥|3 ≡ 0
(Hadamard prescription )

Approximation
for 𝜀(𝑟)

vanishing in 𝑥 = 0



THE REGULARIZATION PROCESS 
-Terms depending on (𝜀/)0 lead to an integral proportional to

∫ d𝑥
𝑥𝛿0(𝑥)
𝜀 ⁄4 0 = ∫ d𝑥𝛿0(𝑥) 𝑥0 + 𝜌 4/7(09(:)𝑥(79):)/0(09(:),

-Terms depending on 𝜀// give an integral proportional to

∫ d𝑥
𝑥𝜀//(𝑥)
𝜀 ⁄: 0 = 2∫ d𝑥

𝑥𝛿/(𝑥)
𝜀 ⁄: 0 == −2∫ d𝑥𝛿(𝑥)

𝑥0 + 𝜌 :/7(09(:)

𝑥:/0(09(:)

+2∫ d𝑥𝛿0(𝑥)𝑥
𝑥0 + 𝜌 4/7(09(:)

𝑥4/0(09(:)
,
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Vanishing contribution in the distributional sense as the 
coefficient of 𝛿$(𝑥) is zero in 𝑥 = 0 if we suppose 𝜅 ≥ 1

𝛿(𝑥)/|𝑥|3 ≡ 0
(Hadamard prescription )Vanishing contribution 

in the distributional sense



THE REGULARIZATION PROCESS 
The regularized 𝑅2𝒯22 assumes this form

𝑅2𝒯22 = −2 2 <
2

⁄4 0 =
21

Remaining regularized Riemann tensor components read as
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THE REGULARIZATION PROCESS 
-The regularized Riemann tensor does not depend on the Dirac-delta 
function and it is discontinuous across Σ, as [𝑅&23

% ] ≠ 0
-The ensuing Ricci tensor, Ricci scalar, and consequently Einstein 
tensor vanish

- The regularized Kretschmann invariant is 

𝑅!"'$𝑅!"'$ =
48𝑀0

𝑟>
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Σ does not represent a thin shell

Σ does not give rise to a new curvature singularity



THE REGULARIZATION PROCESS 
-The Weyl tensor stemming from the regularized Riemann tensor is 
discontinuous across Σ, but it does not depend on Dirac-delta 
function 
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No impulsive gravitational wave on Σ

The Lorentzian-Euclidean Schwarzschild metric
is a valid signature-changing solution 

of vacuum Einstein field equations



AVOIDING THE SINGULARITY 
Henceforth, we will use the Schwarzschild coordinates {𝑡, 𝑟, 𝜃, 𝜙}

with

𝜀 = 1 if 𝑟 > 2𝑀, 𝜀 = 0 if 𝑟 = 2𝑀, and 𝜀 = −1 if 𝑟 < 2𝑀.

Let us study the motion of bodies radially approaching the Lorentzian-
Euclidean black hole
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d𝑠Y = −𝜀 1 −
2𝑀
𝑟 d𝑡Y +

d𝑟Y

1 − 2𝑀𝑟
+ 𝑟YdΩY,



AVOIDING THE SINGULARITY 
• Geodesic motion 

-Observer starting at rest at some finite distance 𝑟? > 2𝑀

-Describe the radial variable via the relation

𝑟(𝜂) = 𝑟?cos0(𝜂/2), 𝜂 ∈ [0, 𝜂@]

-Equations governing infalling radial geodesics are
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𝑟
·
= − <)=>?* ⁄@ ) /A* BC=* ⁄@ ) 6<)

<+BC=* ⁄@ )
𝑡
·
=
𝐸
𝜀)

cos) ⁄𝜂 2
cos) ⁄𝜂 2 − 1 − 𝐸)



AVOIDING THE SINGULARITY 
along with

-The radial velocity 𝑟
·
, and the derivatives  d𝜎/d𝜂, d𝑡/d𝜂 assume 

imaginary values as 𝑟 < 2𝑀

- The radial velocity 𝑟
·

vanishes at 𝑟 = 2𝑀
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d𝜎
d𝜂

= 𝑟
· 6( d𝑟

d𝜂
= 𝑟Dsin ⁄𝜂 2 cos) ⁄𝜂 2

𝜀E

𝜀9sin) ⁄𝜂 2 + 𝐸) cos) ⁄𝜂 2 − 𝜀9

d𝑡
d𝜂

= 𝑡
· d𝜎
d𝜂

=
𝐸
𝜀)

𝑟Dcos9 ⁄𝜂 2 sin ⁄𝜂 2
cos) ⁄𝜂 2 − 1 − 𝐸)

𝜀E

𝜀9sin) ⁄𝜂 2 + 𝐸) cos) ⁄𝜂 2 − 𝜀9



AVOIDING THE SINGULARITY 
-The observer in radial free fall takes an infinite amount of proper 
time 𝜎 to stop at the event horizon                             
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event horizon:
𝜂 ≈ 1.3



AVOIDING THE SINGULARITY 
-The observer in radial free fall takes an infinite amount of time to 
stop at the event horizon also from the point of view of an observer 
stationed at infinity                            
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event horizon:
𝜂 ≈ 1.3



AVOIDING THE SINGULARITY 
• Accelerated motion         

-Radially accelerated observer whose trajectory begins at rest 
from a large distance from the black hole

-Radial-directed orbit (𝜃, 𝜙 constant)
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𝑎K =
d𝑈K

d𝜎
+ Γ!'K 𝑈!𝑈' 𝑈!: =

d𝑥!

d𝜎

𝑎L = MN,

MO
+ 2ΓLPL 𝑈L𝑈P 𝑎P = MN-

MO
+ ΓLLP𝑈L𝑈L + ΓPPP 𝑈P𝑈P

Christoffel symbols result regularized via our technique 



AVOIDING THE SINGULARITY 
- Radial velocity                             

𝑈2 vanishes on the event horizon and becomes imaginary inside it

-Differential equation for the proper time 𝜎
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𝑈P = − 𝜀 ℱ) − 1 − 2𝑀/𝑟 ℱ = 𝑓(𝜎) 1 − 2𝑀/𝑟, 𝑓(𝜎) > 1

MO
MP
= − (

< ℱ*6 (6)R/P



AVOIDING THE SINGULARITY 
The accelerated observer takes an infinite amount of proper time 𝜎
to stop at the event horizon                       
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Discussion & Conclusions 
• The signature change of the Lorentzian-Euclidean metric can be ascribed to the 
emergence of an imaginary time variable 𝑡 when 𝑟 < 2𝑀. We propose to relate this 

feature to the concept of   “ATEMPORALITY”

Atemporality configures  as the dynamical  mechanism by which an observer pointing 
towards the event horizon cannot reach the singularity in r = 0, because real-valued 

geodesics and accelerated orbits cannot be prolonged up to there. 

As a consequence, both time variable and radial velocity become imaginary inside the
black hole. The parameter “measuring” the degree of atemporality is the Kretschmann
scalar

𝐾(𝑟 = 2𝑀) = E
9R),

which is related to the mass M of the black hole.
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Discussion & Conclusions 

• There exists an analogy between atemporality and  the tunnelling 
effect in Quantum Mechanics. 

Quantum Mechanics: the nature of the quantum wave function changes 
inside and outside the potential barrier. 

Atemporality: the nature of time, as well as that of geodesics and 
accelerated paths, changes in passing through the event horizon. 

Atemporality consists in the change of dynamical behavior.
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Discussion & Conclusions 

• There is no preference between a real-valued and imaginary 
time variable

Hawking himself has stated it in his popular science book 
    “The Universe in a Nutshell”:

“One might think this means that imaginary numbers are just a
mathematical game having nothing to do with the real world. From
the viewpoint of positivist philosophy, however, one cannot
determine what is real. All one can do is to find which mathematical
models describe the universe we live in. It turns out that a 
mathematical model involving imaginary time predicts not only
effects we have already observed but also effects we have not been
able to measure yet nevertheless believe in for other reasons.”
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Discussion & Conclusions 

•Atemporality represents a limit for 
measurements and prevents the loss of causality:  

• Causality is lost when time becomes imaginary

• Our system is geodesically complete

• Measurement cannot be performed inside a black hole

Similarities with Uncertainty Principle
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Discussion & Conclusions 
• Atemporality ensures that conservation laws are not 

violated in the Lorentzian region and at the event horizon: 
the velocity of the infalling particle  vanishes at the event 
horizon and becomes imaginary after having crossed it. 

The time translation symmetry and the related  conservation 
of energy can hold if and only if the singularity at r=0 can be 

evaded.

• Bunch of particles (massive and massless) accumulate on the 
event horizon:       

       Can  this fact be the observational feature of the model?
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Discussion & Conclusions 
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In our approach, the bunch of particles accumulating 
around the event horizon, could shape the luminous 
silouhette around the black hole. Forthcoming 
observational  campaigns  could probe this statement.

Work in progress!



Happy Birthday, 
Dear Branko!
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