Towards *p*-adic boundary value problems

Patrick Erik Bradley

Institute of Photogrammetry and Remote Sensing (IPF)
Geodetic Institute (GIK)

@ Karlsruhe Institute of Technology (KIT)

NONLINEARITY, NONLOCALITY AND ULTRAMETRICITY
International Conference on the Occasion of Branko Dragovich
80th Birthday
26 — 30.05.2025
Belgrade, Serbia

Outline

- 1. *p*-adic elliptic divergence operators
- 2. Ultrametric Manifolds

0. Desideratum

Would like to imitate partial derivatives from real analysis,

- \rightarrow but this time on *p*-adic domains
- \rightarrow and even ultrametric manifolds!

Project Goal. Boundary Value Problems on Ultrametric Analytic Manifolds. [Ongoing habilitation project]

1. p-Adic Elliptic Divergence Operators

Let \mathbb{Q}_p be the field of *p*-adic numbers.

Let $F \subset \mathbb{Q}_p^d$ be a compact clopen subset.

 $\pi_i \colon \mathbb{Q}_p^d \to \mathbb{Q}_p$ projection on *i*-th coordinate

Fix a finite disjoint covering U_i of $\pi_i(F)$:

$$\pi_i(F) = \bigsqcup_{k_i=1}^{N_i} B_{i,k_i},$$

where $B_{i,k_i} \subset \mathbb{Q}_p$ are p-adic disks.

Obtain a covering

$$F = \bigsqcup_{k \in N} B_{\underline{k}}$$

with polydisks

$$B_{\underline{k}} = \prod_{i=1}^d B_{i,k_i} \in \mathcal{U} = \mathcal{U}_1 \times \cdots \times \mathcal{U}_d$$

1. p-adic elliptic operators

Haar measure dx on \mathbb{Q}_p^d [corresponds to the Lebesgue measure on \mathbb{R}^d]:

$$dx = dx_1 \wedge \cdots \wedge dx_d$$

with

$$\int_{\mathbb{Z}_0} dx_i = 1, \quad i = 1, \dots, d$$

Write

$$\mu(A) = \int_A dx$$

Have

$$\mu(B_{\underline{k}}) = \prod_{i=1}^{d} \mu_i(B_{i,k}) = \prod_{i=1}^{d} \int_{B_{i,k}} dx_i = p^{-(k_1 + \dots + k_d)}$$

for some $(k_1, \ldots, k_d) \in \mathbb{Z}^d$.

Let $i \in \{1, ..., d\}$.

$$\mathcal{L}_{i,\alpha_i}u(x) = \int_{\pi_i(F)} \mathcal{L}_i(\xi_i,\eta_i)(u(\xi_1,\ldots,\xi_i,\ldots,\xi_d) - u(\xi_1,\ldots,\eta_i,\ldots,\xi_d)) d\mu_i(\eta_i)$$

with $\alpha_i > 0$, $x = (\xi_1, \dots, \xi_d) \in F$, and

$$L_i(\xi_i, \eta_i) = \begin{cases} |\xi_i - \eta_i|_p^{-\alpha_i}, & U_i(\xi_i) = U_i(\eta_i), \ \xi_i \neq \eta_i \\ w_i(U_i(\xi_i), U_i(\eta_i)), & U_i(\xi_i) \neq U_i(\eta_i), \end{cases}$$

where $U_i(\zeta_i) \in \mathcal{U}_i$ is unique with $\zeta_i \in U_i(\zeta_i)$ for $\zeta_i \in \pi_i(F)$, and

$$w_i(U_i(\xi_i), U_i(\eta_i)) \geq 0$$

is symmetric in $\mathcal{U}_i \times \mathcal{U}_i$ outside the diagonal.

Lemma. It holds true that

$$\mathcal{L}_{i,\alpha_i} \circ \mathcal{L}_{j,\alpha_j} = \mathcal{L}_{j,\alpha_j} \circ \mathcal{L}_{i,\alpha_i}$$

for i, j = 1, ..., d.

This is a *p*-adic version of Schwarz's Theorem!

Push-forward via *i*-th coordinate projection:

$$\pi_{i,*}\mathcal{L}_{i,\alpha_i}f(\xi_i) = \int_{\pi_i(F)} L_i(\xi_i,\eta_i)(f(\xi_i) - f(\eta_i)) d\mu_i(\eta_i)$$

for i = 1, ..., d.

Kozyrev wavelets. Let $a \in \mathbb{Q}_p$.

$$B_n(a) = \left\{ x \in \mathbb{Q}_p \mid |x - a|_p \le p^{-n} \right\}$$

 $\chi: \mathbb{Q}_n \to S^1$ a unitary character

like

$$\chi(x):=e^{2\pi i\{x\}_p}\,,$$

where

$$\{x\}_p = \sum_{k=-n}^{-1} \alpha_k p^k$$
 for $x = \sum_{k=-n}^{\infty} \alpha_k p^k \in \mathbb{Q}_p$

Then with $i \in \{1, ..., p-1\}$

$$\psi_{B_n(a),j}\colon \mathbb{Q}_p \to \mathbb{C}, \; \xi \mapsto p^{\frac{n}{2}} \chi(p^{-(n+1)}j\xi) 1_{B_n(a)}(\xi)$$

is a Kozyrev wavelet. [corresponds to Haar wavelet over \mathbb{R}]

Theorem (PEB, ÁML, Kozyrev). The Hilbert space $L^2(\pi_i(F), \mu_i)$ has an orthonormal eigenbasis for $\pi_{i,*}\mathcal{L}_{i,\alpha_i}$ consisting of Kozyrev wavelets $\psi_{B_n(a),j}$, $j=1,\ldots,p-1$, supported in $B_n(a)\subset\pi_i(F)$, plus associated graph eigenfunctions. The eigenvalue corresponding to $\psi=\psi_{B_n(a),j}$ is

$$\lambda_{\psi} = p^{n(1+\alpha_i)}(p^{-m(1+\alpha_i)} + 1) + \sum_{U_i(b) \neq U_i(a)} w_i(U_i(a), U_i(b))\mu_i(U_i(b)) - 1,$$

assuming that $U_i(a) = B_m(a) \supseteq B_n(a)$. The operator is self-adjoint, positive definite, the multiplicity of each eigenvalue is finite.

The eigenvalue should remind us of Kozyrev's eigenvalue calculation for his integral operators!

For d=1, the Zúñiga-Parisi Operators have been studied in recent work by Á.M. Ledezma and P.E.B.:

- ► In the context of local ultrametric approximations of graph Laplacian diffusion
- ► And their finite approximations
- Graph Laplacians appear also in the context of multi-topologies and diffusion on such
- ▶ Also non-autonomous *p*-adic diffusion on time-dependent graphs. . .

Theorem (PEB, ÁML). There exists a probability measure $p_t(x,\cdot)$ with $t\geq 0$, $\xi\in\pi_i(F)$, on the Borel σ -algebra of $\pi_i(F)$ such that the Cauchy problem

$$\frac{\partial}{\partial t}u(\xi,t) + \pi_{i,*}\mathcal{L}_{i,\alpha_i}u(\xi,t) = 0$$
$$u(\xi,0) = u_0(\xi) \in C(\pi_i(F))$$

for $\alpha_i > 0$ has a unique solution in $C^1((0,\infty) \times C(F))$ of the form

$$u(\xi,t) = \int_{\pi_i(F)} L_i(\xi,\eta) p_t(x,d\eta), \quad \xi \in \pi_i(F).$$

In addition, $p_t(x, \cdot)$ is the transition function of a strong Markov process whose paths are càdlàg [i.e. a jump process].

1.2 Boundary Conditions

Let $U \subseteq F$ open. The *i-th component outer boundary* of U is

$$\delta_i^+ U = \{ \eta_i \in \pi_i(F \setminus U) \mid \exists \xi_i \in \pi_i(U) \colon L_i(\xi_i, \eta_i) \neq 0 \},\,$$

the outer boundary of U w.r.t. $\mathcal{L} = (\mathcal{L}_{1,\alpha_1}, \dots, \mathcal{L}_{d,\alpha_d})$ is

$$\delta^+ U = \bigsqcup_{i=1}^d (U \sqcup \delta_1^+ U) \times \cdots \times \delta_i^+ \times \cdots \times (U \sqcup \delta_d^+ U),$$

and

$$\operatorname{cl}_{\mathcal{L}} U = U \sqcup \delta^+ U$$

is the \mathcal{L} -closure of U in F.

Lemma. The set $cl_{\mathcal{L}}$ is clopen in F.

1.2 Boundary Conditions

The *i-th* component inner boundary of U is

$$\delta_i^- u = \{ \xi_i \in \pi_i(U) \mid \exists \eta_i \in \pi_i(F \setminus U) \colon L_i(\xi_i, \eta_i) \neq 0 \}$$

The inner boundary of U w.r.t. $\mathcal{L} = (\mathcal{L}_{1,\alpha_1}, \dots, \mathcal{L}_{d,\alpha_d})$ is

$$\delta^{-}U = \bigsqcup_{i=1}^{a} U \times \cdots \times \delta_{i}^{-} \times \cdots \times U$$

Lemma. It holds true that

$$u|_{\delta_i^-U}(x)=0 \quad \Leftrightarrow \quad u(x)\int_{\delta_i^+U}L_i(\xi_i,\eta_i)\,d\eta_i=0$$
 for $x\in U,\ i=1,\ldots,d.$

1.3 Sobolev Spaces

Let q > 0, $k \in \mathbb{N}$. Define

$$\begin{split} W^{k,q}(U) &= \left\{ f \in L^q(U) \mid \forall \underline{\ell} \in \mathbb{N}^d \colon |\underline{\ell}| \leq k \Rightarrow \left\| \mathcal{L}^{\underline{\ell}} f \right\|_{L^q(U)} < \infty \right\} \\ W_0^{k,q}(U) &= \left\{ f \in W^{k,q}(U) \mid f|_{\delta^- U} = 0 \right\}, \end{split}$$

where

$$\mathcal{L}^{\underline{\ell}} = \mathcal{L}^{\ell_1}_{1,lpha_1} \cdots \mathcal{L}^{\ell_d}_{oldsymbol{d},lpha_d}$$

with

$$\underline{\ell} = (\ell_1, \dots, \ell_d) \in \mathbb{N}^d$$

1.3 Sobolev Spaces

Norm on Sobolev space: $f \in W^{q,k}(U)$, then

$$\|f\|_{W^{q,k}(U)} = \left(\sum_{|\underline{\ell}| < k} \left\| \mathcal{L}^{\underline{\ell}} f \right\|_{L^q(U)} \right)^{\frac{1}{d}}$$

Proposition. The spaces $W^{q,k}(U)$ for $1 \le q < \infty$, $k \in \mathbb{N}$, are Banach spaces, and $W_0^{q,k}(U)$ is a closed subspace of $W^{q,k}(U)$. Furthermore, $W^{2,k}(U)$ is a Hilbert space for $k \in \mathbb{N}$.

Proof.

Imitate the classical case.

1.3 Sobolev Spaces

Proposition (Poincaré Inequality). Let $u \in W^{1,2}(U)$. Then there exists some C > 0 such that

$$\|u\|_{L^2} \leq C \|\mathcal{L}_{i,\alpha_i} u\|_{L^2}$$

for $i = 1, \ldots, d$.

Proof.

Use eigendecomposition w.r.t. $\mathcal{L}_{i,lpha_i}$: $u=\sum_{\psi}lpha_{\psi}\psi$, where

 $\psi=\psi_1\cdots\psi_d$ with ψ_i eigenfunction of $\pi_{i,*}\mathcal{L}_{i,\alpha_i}$, and thus

$$\left\|u\right\|_{L^{2}}^{2} = \sum_{\psi}\left|\alpha_{\psi}\right|^{2} \leq C \sum_{\psi} \lambda_{\psi}^{2} \left|\alpha_{\psi}\right|^{2} = C \left\|\mathcal{L}_{i,\alpha_{i}} u\right\|_{L^{2}},$$

because $\lambda_{\psi} \to \infty$ for supp $\psi \to \{pt\}$.

1.4 Elliptic Divergence Operators

Let $A \subseteq \mathbb{Q}_p^d$.

$$\mathcal{D}(A) = \{f : A \to \mathbb{R} \mid f \text{ is locally constant with compact support}\}\$$

Then define

$$\mathcal{D}_0(U) = \{ f \in \mathcal{D}(U) \mid f|_{\delta^- U} = 0 \}$$

Homogeneous second-order divergence operator on $\mathcal{D}(U)$:

$$P_2(\mathcal{L})u = \sum_{i,j=1}^d \mathcal{L}_{j,\alpha_j} \left(a^{ij} \mathcal{L}_{i,\alpha_i} u \right)$$

with $a^{ij}: F \to \mathbb{R}$ such that

$$a^{ij} = a^{ji}$$

for
$$i, j = 1, ..., d$$
.

1.4 Elliptic Divergence Operators

General second-order divergence operator:

$$P(\mathcal{L}) = P_2(\mathcal{L}) + P_1(\mathcal{L}) + P_0(\mathcal{L})$$

with

$$P_1(\mathcal{L})u = \sum_{i=1}^d b^i \mathcal{L}_{i,\alpha_i} u$$

$$P_2(\mathcal{L})u = cu$$

with b^i , $c \colon F \to \mathbb{R}$.

Assumption. It is assumed that

$$a^{i,j},b^i,c\in L^\infty(U)$$

for
$$i, j = 1, ..., d$$
.

1.4 Elliptic Divergence Operators

Definition. The operator $P(\mathcal{L})$ is called *elliptic*, if the matrix

$$A = (a^{ij}(x)) \in \mathbb{R}^{d \times d}$$

is positive definite for almost all $x \in F$, and the smallest eigenvalue of A is in this case always at least $\theta > 0$.

1.5 Poisson Equation

 $u \in W_0^{1,2}(U)$ is a weak solution of the Poisson equation, if

$$\int_{U} (P(\mathcal{L}) + \mu) u(x) \phi(x) dx = \int_{U} f(x) \phi(x) dx$$

for all $\phi \in W_0^{1,2}(U)$.

Theorem. There is a number $\gamma \geq 0$ such for all $\mu \geq \gamma$ and every $f \in L^2(U)$, there exists a weak solution $u \in W_0^{1,2}(U)$ of the boundary value problem

$$\begin{cases} P(\mathcal{L})u(x) + \mu u(x) = f(x), & x \in U \\ u|_{\delta U} = 0 \end{cases}$$

for $U \subseteq F$ open.

Proof.

Prove energy estimates just like in the classical case.

Theorem. Let $P(\mathcal{L})$ with $a^{i,j}, b^i, c \in \mathcal{D}(U)$ for $i,j = 1, \ldots, d$ acting on $L^2(U)$ with $U \subseteq F$ open. Assume that the eigenspaces of $\pi_{1,*}\mathcal{L}_{1,\alpha_1} \otimes \cdots \otimes \pi_{d,*}\mathcal{L}_{d,\alpha_d}$ are invariant under the multiplication with b^i , $i = 1, \ldots, d$, or that $P_1(\mathcal{L})$ is normal. Moreover, assume that

$$P_k(\mathcal{L})P_\ell(\mathcal{L}) = P_\ell(\mathcal{L})P_k(\mathcal{L})$$

for $k,\ell=0,1,2$. Then $P(\mathcal{L})$ is unitarily diagonalisable, its spectrum is a point spectrum, and all eigenvalues have only finite multiplicity.

Sketch of proof.

Let $\phi' \in \mathcal{E}$, where

 $\mathcal{E}=$ the product eigenbasis for the $\pi_{1,*}\mathcal{L}_{i,\alpha_1},\ldots,\pi_{d,*}\mathcal{L}_{d,\alpha_s}$

Then

$$P(\mathcal{L})\phi = \sum_{\phi' \in \mathcal{E}} \left\langle \phi \left[\sum_{i=1}^{d} \left(\sum_{j=1}^{d} \lambda_{\phi,i} a^{ij} \lambda_{\phi',j} \right) + \lambda_{\phi,i} b^{i} + c \right], \phi' \right\rangle \phi'$$

Since the a^{ij}, b^i, c are locally constant with compact support, there is a finite-dimensional subspace $V_\phi \subset L^2(U)$ invariant under $P(\mathcal{L})$ for each $\phi \in \mathcal{E}$. [The sums here are just finite!]

[Not vet done]

Continuation of proof.

 $P(\mathcal{L})$ acts on V_ϕ as

$$W_{\phi} = \sum_{i,j=1}^{d} C_{\phi,ij} + C_{\phi,i} + C_{\phi},$$

where

$$C_{\phi,ij} = D_{\phi,i}A_{\phi,ij}D_{\phi,j}, \quad C_{\phi,i} = D_{\phi,i}B_{\phi,i}$$

with $D_{\phi,i}, D_{\phi,j}$ diagonal matrices, and $A_{\phi,ij}, B_{\phi,i}, C_{\phi}$ symmetric matrices representing multiplication with a^{ij}, b^i, c on V_{ϕ} .

- Diagonalisablility of $P(\mathcal{L})$ and orthogonality property of eigenbasis follows from assumptions.
- Finiteness of eigenvalues of $P(\mathcal{L})$ and point spectrum property follow from that of the eigenvalues of \mathcal{L}_{i,α_i} .

 $P_1(\mathcal{L})$. The property

$$C_{\phi,i} = D_{\phi,i}B_{\phi,i}$$

with $B_{\phi,i}$ symmetric and $D_{\phi,i}$ diagonal matrix is the *detailed* balance property, and $D_{\phi,i}$ corresponds to a stationary distribution for $P_1(\mathcal{L})$.

 $P_2(\mathcal{L})$. The property

$$C_{\phi,ij} = D_{\phi,i} A_{\phi,ij} D_{\phi,j}$$

is also a kind of detailed balance property for $P_2(\mathcal{L})$.

 $P(\mathcal{L})$. Together, the operator $P(\mathcal{L})$ can be viewed as a balanced process.

Corollary. Under the hypothesis of the Theorem,

$$L_0^2(U) = \{ u \in L^2(U) \mid u|_{\delta^- U} = 0 \}$$

is invariant under $P(\mathcal{L})$, and this operator is also unitarily diagonalisable with point spectrum, and with eigenfunctions in $\mathcal{D}_0(U)$.

Assumption. It is assumed that $P(\mathcal{L})$ is elliptic, satisfies

$$a^{ij}, b^i, c \in \mathcal{D}(U), \quad i, j = 1, \dots d,$$

the eigenspaces of $\pi_{i,*}\mathcal{L}_{i,\alpha_i}$ are invariant under the multiplication with b^i , or that $P_1(\mathcal{L})$ is normal, and that the eigenvalues of $P(\mathcal{L})$ are non-negative.

Lemma. The semigroup $e^{-tP(\mathcal{L})}$ acts compactly on $W_0^{k,2}(U)$ for t > 0, $k \in \mathbb{N}$.

Proof.

The operators $e^{-tP(\mathcal{L})}$ for t > 0 are trace-class operators acting on the Hilbert spaces $W_0^{k,2}(U)$ by Assumption.

Let $x_0 \in U$. The Green function for the diffusion equation

$$\frac{\partial}{\partial t}u(x,t) + P(\mathcal{L})u(x,t) = 0$$
$$u|_{\delta^{-}(U)} = 0$$

is given by the Poisson equation

$$\begin{cases} P(\mathcal{L})G(x,x_0) = \delta(x-x_0), & x \in U \\ G(x,x_0) = 0, & x \in \delta^-(U) \end{cases}$$

i.e. we can take $\gamma = \mu = 0$, here by Assumption.

Relation between Green function and heat kernel:

$$G(x,y) = \int_0^\infty h(x,y,t) dt$$

with

$$h(x,y,t) = \sum_{\substack{\psi \\ \lambda_{\psi} > 0}} e^{-\lambda_{\psi}t} \psi(x) \overline{\psi(y)}$$

as part of the heat kernel

$$H(x, y, t) = h(x, y, t) + \sum_{\substack{\psi \\ \lambda_{\psi} = 0}} \psi(x) \overline{\psi(y)}$$

with ψ running through an eigenbasis of $W_0^{k,2}(U)$ for $P(\mathcal{L})$.

Strategy. Prove convergence of H(x, y, t), and solve the Poisson equation for the Green function.

Markov property.

Theorem. The operator $-P(\mathcal{L})$ generates a contraction semigroup $e^{-tP(\mathcal{L})}$ with $t\geq 0$ on $W_0^{k,2}(\mathcal{L})$ for $k\in\mathbb{N}$, and the action satisfies the Markov property if $k\geq 2$.

Sketch of proof.

Contraction semigroup property. Show that

$$\left\| \int_0^t e^{-\tau P(\mathcal{L})} u \, d\tau \right\|_{W_0^{k,2}(U)} \le t \, \|u\|_{W_0^{k,2}(U)}$$

and use that

$$R(\lambda)u = \lambda \int_0^\infty e^{-\lambda t} \int_0^t e^{-\tau P(\mathcal{L})} u \, d\tau \, dt$$

expresses the resolvent
$$R(\lambda)=(\lambda+P(\mathcal{L}))^{-1}$$
.

Continued proof.

It follows that

$$||R(\lambda)u||_{W_0^{k,2}(U)} \le \lambda ||u||_{W_0^{k,2}(U)}$$
,

i.e.

$$\|\lambda + P(\mathcal{L})\|^{-1} \leq \frac{1}{\lambda}$$
.

Then use Hille-Yosida shows that $e^{-tP(\mathcal{L})}$ is a contraction semigroup on $W_0^{k,2}(U)$ for $t \geq 0$, $k \in \mathbb{N}$.

Markov property. First, show for $k \ge 2$ that

$$0 \le f \le 1 \text{ a.e.} \quad \Rightarrow \quad 0 \le e^{-tP(\mathcal{L})f} \le 1$$
 (1)

$$e^{-tP(\mathcal{L})}1_U = 1_U \tag{2}$$

not finished

Continued proof.

 $f\geq 0$ means f is a positive linear combination of eigenfunctions invariant under $\left(\mathbb{F}_p^\times\right)^d$ via

$$x \mapsto (j_1\xi_1,\ldots,j_d\xi_d)$$

for $\mathbf{x}=(\xi_1,\ldots,\xi_d)\in U$, and $(j_1,\ldots,j_d)\in \left(\mathbb{F}_p^\times\right)^d$. The eigenspaces of $P(\mathcal{L})$ are invariant under this action. Hence, $e^{-tP(\mathcal{L})}f$ is invariant. Non-Positivity of eigenvalues thus show (1).

(2): 1_U is an eigenfunction with eigenvalue 0.

Next, find an invariant measure for the semigroup $e^{-tP(\mathcal{L})}$. Use the invariant measures π_ϕ for the finite-dimensional invariant spaces V_ϕ , and show that $\pi = \sum\limits_{V_\phi} \pi_\phi$ is an invariant measure for t>0,

and $k \ge 2$. [$k \ge 2$ is needed due to infinite quadratic sums with eigenvalues in the proof.]

Corollary. The semigroup $e^{-tP(\mathcal{L})}$ with $t \geq 0$ has a kernel representation $p_t(x,\cdot)$ for $t \geq 0$, $x \in U$, i.e. the map $A \mapsto p_t(x,A)$ is a Borel measure, and it holds true that

$$\int_{U} p_{t}(x, dy) f(y) = e^{-tP(\mathcal{L})} f(x)$$

for $f \in W_0^{k,2}(U)$ with $k \ge 2$.

Proof.

The theory of Markov diffusion operators shows this.

Theorem. The Markov semigroup $e^{-tP(\mathcal{L})}$ on $W_0^{k,2}(U)$ has a heat kernel function given by

$$H(x, y, t) \in L^{\infty}(U \times U)$$

for t > 0, $k \ge 2$.

Proof.

Need only show that $H(x, y, t) \in L^{\infty}(U \times U)$.

x = y. H(x, x, t) is the trace of $e^{-tP(\mathcal{L})}$, and is finite.

$$x \neq y$$
. Since $\left| \psi(x) \overline{\psi(y)} \right| \leq \mu(U)$, it follows that

$$|H(x,y,t)| \le \sum_{\psi} e^{-t\lambda_{\psi}} < \infty,$$

and the assertion follows.

Corollary. The Green function G(x, y) for $-P(\mathcal{L})$ exists and is given by

$$G(x,y) = \sum_{\substack{\psi \\ \lambda_{\psi} > 0}} \lambda_{\psi}^{-1} \psi(x) \overline{\psi(y)}$$

for $x, y \in U$.

Proof.

The expression for G(x,y) is given by integration from its relation with the heat kernel. Convergence follows from the unbounded growth of the eigenvalues $\lambda_{\psi} \in O\left(p^{2dn(1+\alpha)}\right)$ with p^{-dn} the volume of the support of $\phi \in \mathcal{E}$ making up ψ for n >> 0, and

$$\alpha = \max\left\{\alpha_1, \ldots, \alpha_d\right\},\,$$

as well as
$$\left|\psi(x)\overline{\psi(y)}\right| \leq \mu(U)$$
 for $x,y \in U$.

2 Ultrametric Manifolds

Now we sketch how to possibly generalise the previous results to ultrametric manifolds.

Definition. A Cantor set is a totally disconnected compact metrisable space without isolated points.

Notice that up to homeomorphism, there is precisely one Cantor set.

Definition. A locally compact local Cantor set is a second countable Hausdorff space in which each point has an open neighbourhood which is a Cantor set.

Definition. An ultrametric d on a Cantor set C is regular, if d generates the topology of C. The pair (C, d) is then called a regular ultrametric Cantor set.

Definition. A chart of a locally compact local Cantor set X is a map $\phi \colon U \to V$ such that U is open in X, V is a Cantor set, $\phi(U)$ is an open of V, and ϕ is a homeomorphism onto its image. An ultrametric n-chart of X is a tuple

$$c = (U, \phi; d_1, \ldots, d_n)$$

where $\phi \colon U \to V$ is a chart, such that V is given the structure of

$$V = (C, d_1) \times \cdots \times (C, d_n),$$

where C is a Cantor set, and each d_i is a regular ultrametric on C. The number $n \in \mathbb{N}$ is the dimension of the ultrametric chart.

Fix a Cantor set V.

Given two charts $\phi_{\alpha} \colon U_{\alpha} \to V$, $\phi_{\beta} \colon U_{\beta} \to V$ of a locally compact local Cantor set X, there is a transition map

$$\tau_{\alpha\beta} \colon \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

given by

$$\tau_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1}$$

which is a homeomorphism.

We would like to define analyticity for maps between ultrametric sets.

Let $B_{\rho}(z)$ be the polydisk centred in

$$z \in (C_1, d_1) \times \cdots \times (C_n, d_n),$$

where each (C_i, d_i) is a regular ultrametric Cantor set.

Fix a Radon measure ν_i on (C_i, d_i) , i = 1, ..., n, and let

$$\nu = \nu_1 \wedge \cdots \wedge \nu_n$$

be the product measure.

Definition. A homeomorphism

$$\tau: (C_1, d_1) \times \cdots \times (C_n, d_n) \rightarrow (C_1, d_1) \times \cdots \times (C_m, d_m)$$

is *analytic*, if it takes polydisks to polydisks, and for each $z \in (C_1, d_1) \times \cdots \times (C_n, d_n)$, the value

$$lpha_{ij}(z) = -\log \left(\frac{
u_i(B_{
ho_i}(z))}{
u_j\left(\pi_j\left(\tau\left(B_{\underline{
ho}}(z)\right)\right)\right)} \right)$$

is constant for $\|\rho\|_1 << \infty$ with $i=1,\ldots,n, j=1,\ldots,m$.

Here,

$$\pi_k : (C_1, d_1) \times \cdots \times (C_n, d_n) \rightarrow (C_k, d_k)$$

is projection onto the k-th factor.

In the case of overlap between an ultrametric *n*-chart ϕ_{α} and an *m*-chart ϕ_{β} , the sets

$$\phi_{\alpha}(U_{\alpha}\cap U_{\beta}), \phi_{\beta}(U_{\alpha}\cap U_{\beta})$$

are disjoint unions of products of ultrametric Cantor sets.

Definition. We say that

$$\tau_{\alpha\beta} \colon \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is *locally analytic*, if every $z \in \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ has a clopen neighbourhood $C = (C_1, d_1) \times \cdots \times (C_n, d_n)$ such that $\tau_{\alpha\beta}$ restricted to C is an analytic homeomorphism onto its image.

Obtain in the case m = n a family

$$d\tau_{\alpha\beta}(x) := e^{A_{\alpha\beta}(x)} \in \mathsf{GL}_n(\mathbb{R}),$$

where for
$$x \in U_{\alpha} \cap U_{\beta}$$
: $A_{\alpha\beta}(x) = (\alpha_{ij}(\tau_{\alpha\beta}(x))_{i,j=1,\ldots,n} \in \mathbb{R}^{n \times n}$.

Definition. Two ultrametric charts

$$c_{\alpha} = (U_{\alpha}, \phi_{\alpha}, d_{\alpha,1}, \dots, d_{\alpha,n_{\alpha}}), \ c_{\beta} = (U_{\beta}, \phi_{\beta}, d_{\beta,1}, \dots, d_{\beta,n_{\beta}})$$

of a locally compact local Cantor set X are compatible, if the maps

$$\phi_{\alpha}(U_{\alpha}\cap U_{\beta}) \xrightarrow[\tau_{\beta\alpha}]{\tau_{\alpha\beta}} \phi_{\beta}(U_{\alpha}\cap U_{\beta})$$

are locally analytic homeomorphisms. Two compatible charts are C^0 -compatible, if $n_{\alpha}=n_{\beta}$ and

$$d au_{\alpha\beta}\colon X o \mathsf{GL}_n(\mathbb{R}),\ x\mapsto d au_{\alpha\beta}(x)$$

is continuous, in the case that $U_{\alpha} \cap U_{\beta} \neq \emptyset$.

Definition. An ultrametric C^0 -atlas $\mathcal A$ of a locally compact local Cantor set X is a family of ultrametric charts c_{α} , $\alpha \in I$, which are mutually C^0 -compatible, and such that $\{U_{\alpha} \mid \alpha \in I\}$ is a cover of X. Two atlantes $\mathcal A, \mathcal A'$ are C^0 -compatible, if $\mathcal A \cup \mathcal A'$ is a C^0 -atlas of X.

- An ultrametric C^0 -atlas of X is *full*, if any ultrametric chart C^0 -compatible with any chart in \mathcal{A} already belongs to \mathcal{A} .
- C^0 -compatibility of atlantes is an equivalence relation.
- Each equivalence class of C^0 -compatible atlantes of X is readily seen to contain a unique full atlas.

Definition. An ultrametric analytic C^0 -manifold is a pair (X, \mathcal{A}) with X a locally compact local Cantor set, and \mathcal{A} a full ultrametric C^0 -atlas of X.

How to continue from here:

- Tangent bundle as a "mixed" kind of "manifold"!
- Vector fields on ultrametric manifolds via tangent spaces as real vector spaces!
- ► Imitate the Laplace-Beltrami operator using *local* coordinate Laplacians [Vladimirov-Pearson operators]!
- Imitate differential forms!
- See if all this works also for ultrametric manifolds whose local dimension is not constant!
- Study the heat equation!
- Define general elliptic operators like pdo's, but on ultrametric manifolds, and do the same!

Persons providing ideas for this work

- ▶ B. Dragovich
- F. Murtagh
- W. Zúñiga-Galindo
- ▶ V.S. Vladimirov, I. Volovich, E. Zelenov
- S. Kozyrev, A. Khrennikov
- Á.M. Ledezma
- K. Taira
- J. Belissard and J.C. Pearson
- A. Bendikov, A. Grigor'yan, Ch. Pittet, W. Woess
- D. Weisbart
- L.C. Evans
- A. and J. Bradley
- ► J.P. Velazquez-Rodriguez
- and many others

Funding

This work is partly funded by the Deutsche Forschungsgemeinschaft under project number 469999674.

Dear Branko,

Many Years!

Mnogaja Ljeta!