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1. p-adic elliptic divergence operators

2. Ultrametric Manifolds



0. Desideratum

Would like to imitate partial derivatives from real analysis,

→ but this time on p-adic domains

→ and even ultrametric manifolds!

Project Goal. Boundary Value Problems on Ultrametric An-
alytic Manifolds. [Ongoing habilitation project]



1. p-Adic Elliptic Divergence Operators
Let Qp be the field of p-adic numbers.

Let F ⊂ Qd
p be a compact clopen subset.

πi : Qd
p → Qp projection on i-th coordinate

Fix a finite disjoint covering Ui of πi (F ):

πi (F ) =

Ni⊔
ki=1

Bi ,ki ,

where Bi ,ki ⊂ Qp are p-adic disks.

Obtain a covering

F =
⊔
k∈N

Bk

with polydisks

Bk =
d∏

i=1

Bi ,ki ∈ U = U1 × · · · × Ud



1. p-adic elliptic operators

Haar measure dx on Qd
p

[corresponds to the Lebesgue measure on Rd ]:

dx = dx1 ∧ · · · ∧ dxd

with ∫
Zp

dxi = 1, i = 1, . . . , d

Write

µ(A) =

∫
A
dx

Have

µ(Bk) =
d∏

i=1

µi (Bi ,k) =
d∏

i=1

∫
Bi,k

dxi = p−(k1+···kd )

for some (k1, . . . , kd) ∈ Zd .



1.1 Component Parisi-Zúñiga Operators

Let i ∈ {1, . . . , d}.

Li ,αi
u(x) =∫
πi (F )
Li (ξi , ηi )(u(ξ1, . . . , ξi , . . . , ξd)− u(ξ1, . . . , ηi , . . . , ξd)) dµi (ηi )

with αi > 0, x = (ξ1, . . . , ξd) ∈ F , and

Li (ξi , ηi ) =

{
|ξi − ηi |−αi

p , Ui (ξi ) = Ui (ηi ), ξi 6= ηi

wi (Ui (ξi ),Ui (ηi )), Ui (ξi ) 6= Ui (ηi ),

where Ui (ζi ) ∈ Ui is unique with ζi ∈ Ui (ζi ) for ζi ∈ πi (F ),
and

wi (Ui (ξi ),Ui (ηi )) ≥ 0

is symmetric in Ui × Ui outside the diagonal.



1.1 Component Parisi-Zúñiga Operator

Lemma. It holds true that

Li ,αi
◦ Lj ,αj

= Lj ,αj
◦ Li ,αi

for i , j = 1, . . . , d .

This is a p-adic version of Schwarz’s Theorem!



1.1 Component Parisi-Zúñiga Operator

Push-forward via i-th coordinate projection:

πi ,∗Li ,αi
f (ξi ) =

∫
πi (F )

Li (ξi , ηi )(f (ξi )− f (ηi )) dµi (ηi )

for i = 1, . . . , d .



1.1 Component Parisi-Zúñiga Operators
Kozyrev wavelets. Let a ∈ Qp.

Bn(a) =
{
x ∈ Qp | |x − a|p ≤ p−n

}
χ : Qp → S1 a unitary character

like
χ(x) := e2πi{x}p ,

where

{x}p =
−1∑

k=−n
αkp

k for x =
∞∑

k=−n
αkp

k ∈ Qp

Then with j ∈ {1, . . . , p − 1}

ψBn(a),j : Qp → C, ξ 7→ p
n
2 χ(p−(n+1)jξ) 1Bn(a)(ξ)

is a Kozyrev wavelet. [corresponds to Haar wavelet over R]



1.1 Component Parisi-Zúñiga Operators

Theorem (PEB, ÁML, Kozyrev). The Hilbert space
L2(πi (F ), µi ) has an orthonormal eigenbasis for πi ,∗Li ,αi

con-
sisting of Kozyrev wavelets ψBn(a),j , j = 1, . . . , p − 1, sup-
ported in Bn(a) ⊂ πi (F ), plus associated graph eigenfunc-
tions. The eigenvalue corresponding to ψ = ψBn(a),j is

λψ = pn(1+αi )(p−m(1+αi ) + 1)

+
∑

Ui (b)6=Ui (a)

wi (Ui (a),Ui (b))µi (Ui (b))− 1 ,

assuming that Ui (a) = Bm(a) ⊇ Bn(a). The operator is self-
adjoint, positive definite, the multiplicity of each eigenvalue
is finite.

The eigenvalue should remind us of Kozyrev’s eigenvalue
calculation for his integral operators!



1.1 Component Parisi-Zúñiga Operators

For d = 1, the Zúñiga-Parisi Operators have been studied in recent
work by Á.M. Ledezma and P.E.B.:

I In the context of local ultrametric approximations of graph
Laplacian diffusion

I And their finite approximations

I Graph Laplacians appear also in the context of
multi-topologies and diffusion on such

I Also non-autonomous p-adic diffusion on time-dependent
graphs. . .



1.1 Component Parisi-Zúñiga Operator

Theorem (PEB, ÁML). There exists a probability measure
pt(x , ·) with t ≥ 0, ξ ∈ πi (F ), on the Borel σ-algebra of
πi (F ) such that the Cauchy problem

∂

∂t
u(ξ, t) + πi ,∗Li ,αi

u(ξ, t) = 0

u(ξ, 0) = u0(ξ) ∈ C (πi (F ))

for αi > 0 has a unique solution in C 1 ((0,∞)× C (F )) of
the form

u(ξ, t) =

∫
πi (F )

Li (ξ, η)pt(x , dη), ξ ∈ πi (F ) .

In addition, pt(x , ·) is the transition function of a strong
Markov process whose paths are càdlàg [i.e. a jump process].



1.2 Boundary Conditions

Let U ⊆ F open. The i-th component outer boundary of U is

δ+
i U = {ηi ∈ πi (F \ U) | ∃ξi ∈ πi (U) : Li (ξi , ηi ) 6= 0} ,

the outer boundary of U w.r.t. L = (L1,α1 , . . . ,Ld ,αd
) is

δ+U =
d⊔

i=1

(U t δ+
1 U)× · · · × δ+

i × · · · × (U t δ+
d U) ,

and
clL U = U t δ+U

is the L-closure of U in F .

Lemma. The set clL is clopen in F .



1.2 Boundary Conditions

The i-th component inner boundary of U is

δ−i u = {ξi ∈ πi (U) | ∃ηi ∈ πi (F \ U) : Li (ξi , ηi ) 6= 0}

The inner boundary of U w.r.t. L = (L1,α1 , . . . ,Ld ,αd
) is

δ−U =
d⊔

i=1

U × · · · × δ−i × · · · × U

Lemma. It holds true that

u|δ−i U(x) = 0 ⇔ u(x)

∫
δ+
i U

Li (ξi , ηi ) dηi = 0

for x ∈ U, i = 1, . . . , d .



1.3 Sobolev Spaces

Let q > 0, k ∈ N. Define

W k,q(U) =

{
f ∈ Lq(U) | ∀` ∈ Nd : |`| ≤ k ⇒

∥∥∥L`f ∥∥∥
Lq(U)

<∞
}

W k,q
0 (U) =

{
f ∈W k,q(U) | f |δ−U = 0

}
,

where
L` = L`1

1,α1
· · · L`dd ,αd

with
` = (`1, . . . , `d) ∈ Nd



1.3 Sobolev Spaces

Norm on Sobolev space: f ∈W q,k(U), then

‖f ‖W q,k (U) =

∑
|`|<k

∥∥∥L`f ∥∥∥
Lq(U)

 1
d

Proposition. The spaces W q,k(U) for 1 ≤ q < ∞, k ∈
N, are Banach spaces, and W q,k

0 (U) is a closed subspace
of W q,k(U). Furthermore, W 2,k(U) is a Hilbert space for
k ∈ N.

Proof.
Imitate the classical case.



1.3 Sobolev Spaces

Proposition (Poincaré Inequality). Let u ∈ W 1,2(U). Then
there exists some C > 0 such that

‖u‖L2 ≤ C ‖Li ,αi
u‖L2

for i = 1, . . . , d .

Proof.
Use eigendecomposition w.r.t. Li ,αi

: u =
∑
ψ

αψψ, where

ψ = ψ1 · · ·ψd with ψi eigenfunction of πi ,∗Li ,αi
, and thus

‖u‖2
L2 =

∑
ψ

|αψ|2 ≤ C
∑
ψ

λ2
ψ |αψ|

2 = C ‖Li ,αi
u‖L2 ,

because λψ →∞ for suppψ → {pt}.



1.4 Elliptic Divergence Operators

Let A ⊆ Qd
p .

D(A) = {f : A→ R | f is locally constant with compact support}

Then define

D0(U) = {f ∈ D(U) | f |δ−U = 0}

Homogeneous second-order divergence operator on D(U):

P2(L)u =
d∑

i ,j=1

Lj ,αj

(
aijLi ,αi

u
)

with aij : F → R such that

aij = aji

for i , j = 1, . . . , d .



1.4 Elliptic Divergence Operators

General second-order divergence operator:

P(L) = P2(L) + P1(L) + P0(L)

with

P1(L)u =
d∑

i=1

biLi ,αi
u

P0(L)u = cu

with bi , c : F → R.

Assumption. It is assumed that

ai ,j , bi , c ∈ L∞(U)

for i , j = 1, . . . , d .



1.4 Elliptic Divergence Operators

Definition. The operator P(L) is called elliptic, if the matrix

A = (aij(x)) ∈ Rd×d

is positive definite for almost all x ∈ F , and the smallest
eigenvalue of A is in this case always at least θ > 0.



1.5 Poisson Equation
u ∈W 1,2

0 (U) is a weak solution of the Poisson equation, if∫
U

(P(L) + µ) u(x)φ(x) dx =

∫
U
f (x)φ(x) dx

for all φ ∈W 1,2
0 (U).

Theorem. There is a number γ ≥ 0 such for all µ ≥ γ and
every f ∈ L2(U), there exists a weak solution u ∈ W 1,2

0 (U)
of the boundary value problem{

P(L)u(x) + µu(x) = f (x), x ∈ U

u|δU = 0

for U ⊆ F open.

Proof.
Prove energy estimates just like in the classical case.



1.6 Spectrum

Theorem. Let P(L) with ai ,j , bi , c ∈ D(U) for i , j =
1, . . . , d acting on L2(U) with U ⊆ F open. Assume that
the eigenspaces of π1,∗L1,α1 ⊗ · · · ⊗ πd ,∗Ld ,αd

are invariant
under the multiplication with bi , i = 1, . . . , d , or that P1(L)
is normal. Moreover, assume that

Pk(L)P`(L) = P`(L)Pk(L)

for k , ` = 0, 1, 2. Then P(L) is unitarily diagonalisable, its
spectrum is a point spectrum, and all eigenvalues have only
finite multiplicity.



1.6 Spectrum

Sketch of proof.

Let φ′ ∈ E , where

E = the product eigenbasis for the π1,∗Li ,α1 , . . . , πd ,∗Ld ,αs

Then

P(L)φ =
∑
φ′∈E

〈
φ

 d∑
i=1

 d∑
j=1

λφ,ia
ijλφ′,j

+ λφ,ib
i + c

 , φ′〉φ′
Since the aij , bi , c are locally constant with compact support, there
is a finite-dimensional subspace Vφ ⊂ L2(U) invariant under P(L)
for each φ ∈ E . [The sums here are just finite!]

[Not yet done]



1.6 Spectrum

Continuation of proof.

P(L) acts on Vφ as

Wφ =
d∑

i ,j=1

Cφ,ij + Cφ,i + Cφ ,

where
Cφ,ij = Dφ,iAφ,ijDφ,j , Cφ,i = Dφ,iBφ,i

with Dφ,i ,Dφ,j diagonal matrices, and Aφ,ij ,Bφ,i ,Cφ symmetric
matrices representing multiplication with aij , bi , c on Vφ.

- Diagonalisablility of P(L) and orthogonality property of
eigenbasis follows from assumptions.

- Finiteness of eigenvalues of P(L) and point spectrum property
follow from that of the eigenvalues of Li ,αi

.



1.6 Spectrum

P1(L). The property
Cφ,i = Dφ,iBφ,i

with Bφ,i symmetric and Dφ,i diagonal matrix is the detailed
balance property, and Dφ,i corresponds to a stationary
distribution for P1(L).

P2(L). The property
Cφ,ij = Dφ,iAφ,ijDφ,j

is also a kind of detailed balance property for P2(L).

P(L). Together, the operator P(L) can be viewed as a balanced
process.



1.6 Spectrum

Corollary. Under the hypothesis of the Theorem,

L2
0(U) =

{
u ∈ L2(U) | u|δ−U = 0

}
is invariant under P(L), and this operator is also unitarily
diagonalisable with point spectrum, and with eigenfunctions
in D0(U).



1.7 Heat Kernels and Green function

Assumption. It is assumed that P(L) is elliptic, satisfies

aij , bi , c ∈ D(U), i , j = 1, . . . d ,

the eigenspaces of πi ,∗Li ,αi
are invariant under the multiplica-

tion with bj , or that P1(L) is normal, and that the eigenvalues
of P(L) are non-negative.

Lemma. The semigroup e−tP(L) acts compactly on W k,2
0 (U)

for t > 0, k ∈ N.

Proof.
The operators e−tP(L) for t > 0 are trace-class operators acting on
the Hilbert spaces W k,2

0 (U) by Assumption.



1.7 Kernels and Green functions

Let x0 ∈ U. The Green function for the diffusion equation

∂

∂t
u(x , t) + P(L)u(x , t) = 0

u|δ−(U) = 0

is given by the Poisson equation{
P(L)G (x , x0) = δ(x − x0), x ∈ U

G (x , x0) = 0, x ∈ δ−(U)

i.e. we can take γ = µ = 0, here by Assumption.



1.7 Heat Kernels and Green functions

Relation between Green function and heat kernel:

G (x , y) =

∫ ∞
0

h(x , y , t) dt

with
h(x , y , t) =

∑
ψ

λψ>0

e−λψtψ(x)ψ(y)

as part of the heat kernel

H(x , y , t) = h(x , y , t) +
∑
ψ

λψ=0

ψ(x)ψ(y)

with ψ running through an eigenbasis of W k,2
0 (U) for P(L).

Strategy. Prove convergence of H(x , y , t), and solve the Poisson
equation for the Green function.



1.7 Heat Kernels and Green functions
Markov property.

Theorem. The operator −P(L) generates a contraction

semigroup e−tP(L) with t ≥ 0 on W k,2
0 (L) for k ∈ N, and

the action satisfies the Markov property if k ≥ 2.

Sketch of proof.

Contraction semigroup property. Show that∥∥∥∥∫ t

0
e−τP(L)u dτ

∥∥∥∥
W k,2

0 (U)

≤ t ‖u‖
W k,2

0 (U)

and use that

R(λ)u = λ

∫ ∞
0

e−λt
∫ t

0
e−τP(L)u dτ dt

expresses the resolvent R(λ) = (λ+ P(L))−1. not finished



1.7 Heat Kernels and Green functions

Continued proof.

It follows that

‖R(λ)u‖
W k,2

0 (U)
≤ λ ‖u‖

W k,2
0 (U)

,

i.e.

‖λ+ P(L)‖−1 ≤ 1

λ
.

Then use Hille-Yosida shows that e−tP(L) is a contraction
semigroup on W k,2

0 (U) for t ≥ 0, k ∈ N.

Markov property. First, show for k ≥ 2 that

0 ≤ f ≤ 1 a.e. ⇒ 0 ≤ e−tP(L)f ≤ 1 (1)

e−tP(L)1U = 1U (2)

not finished



1.7 Heat Kernels and Green functions

Continued proof.

f ≥ 0 means f is a positive linear combination of eigenfunctions

invariant under
(
F×p
)d

via

x 7→ (j1ξ1, . . . , jdξd)

for x = (ξ1, . . . , ξd) ∈ U, and (j1, . . . , jd) ∈
(
F×p
)d

. The
eigenspaces of P(L) are invariant under this action. Hence,
e−tP(L)f is invariant. Non-Positivity of eigenvalues thus show (1).

(2): 1U is an eigenfunction with eigenvalue 0.

Next, find an invariant measure for the semigroup e−tP(L). Use the
invariant measures πφ for the finite-dimensional invariant spaces
Vφ, and show that π =

∑
Vφ

πφ is an invariant measure for t > 0,

and k ≥ 2. [k ≥ 2 is needed due to infinite quadratic sums with
eigenvalues in the proof.]



1.7 Heat Kernels and Green functions

Corollary. The semigroup e−tP(L) with t ≥ 0 has a kernel
representation pt(x , ·) for t ≥ 0, x ∈ U, i.e. the map A 7→
pt(x ,A) is a Borel measure, and it holds true that∫

U
pt(x , dy)f (y) = e−tP(L)f (x)

for f ∈W k,2
0 (U) with k ≥ 2.

Proof.
The theory of Markov diffusion operators shows this.



1.7 Heat Kernels and Green functions

Theorem. The Markov semigroup e−tP(L) on W k,2
0 (U) has

a heat kernel function given by

H(x , y , t) ∈ L∞(U × U)

for t > 0, k ≥ 2.

Proof.
Need only show that H(x , y , t) ∈ L∞(U × U).

x = y . H(x , x , t) is the trace of e−tP(L), and is finite.

x 6= y . Since
∣∣∣ψ(x)ψ(y)

∣∣∣ ≤ µ(U) , it follows that

|H(x , y , t)| ≤
∑
ψ

e−tλψ <∞ ,

and the assertion follows.



1.7 Heat Kernels and Green functions

Corollary. The Green function G (x , y) for −P(L) exists and
is given by

G (x , y) =
∑
ψ

λψ>0

λ−1
ψ ψ(x)ψ(y)

for x , y ∈ U.

Proof.
The expression for G (x , y) is given by integration from its relation
with the heat kernel. Convergence follows from the unbounded
growth of the eigenvalues λψ ∈ O

(
p2dn(1+α)

)
with p−dn the

volume of the support of φ ∈ E making up ψ for n >> 0, and

α = max {α1, . . . , αd} ,

as well as
∣∣∣ψ(x)ψ(y)

∣∣∣ ≤ µ(U) for x , y ∈ U.



2 Ultrametric Manifolds

Now we sketch how to possibly generalise the previous results
to ultrametric manifolds.



2 Ultrametric Manifolds

Definition. A Cantor set is a totally disconnected compact
metrisable space without isolated points.

Notice that up to homeomorphism, there is precisely one Cantor
set.

Definition. A locally compact local Cantor set is a second
countable Hausdorff space in which each point has an open
neighbourhood which is a Cantor set.

Definition. An ultrametric d on a Cantor set C is regular, if
d generates the topology of C . The pair (C , d) is then called
a regular ultrametric Cantor set.



2 Ultrametric Manifolds

Definition. A chart of a locally compact local Cantor set X
is a map φ : U → V such that U is open in X , V is a Cantor
set, φ(U) is an open of V , and φ is a homeomorphism onto
its image. An ultrametric n-chart of X is a tuple

c = (U, φ; d1, . . . , dn)

where φ : U → V is a chart, such that V is given the structure
of

V = (C , d1)× · · · × (C , dn),

where C is a Cantor set, and each di is a regular ultrametric
on C . The number n ∈ N is the dimension of the ultrametric
chart.



2 Ultrametric Manifolds

Fix a Cantor set V .

Given two charts φα : Uα → V , φβ : Uβ → V of a locally compact
local Cantor set X , there is a transition map

ταβ : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

given by
ταβ = φβ ◦ φ−1

α

which is a homeomorphism.

We would like to define analyticity for maps between ultrametric
sets.



2 Ultrametric Manifolds

Let Bρ(z) be the polydisk centred in

z ∈ (C1, d1)× · · · × (Cn, dn) ,

where each (Ci , di ) is a regular ultrametric Cantor set.

Fix a Radon measure νi on (Ci , di ), i = 1, . . . , n, and let

ν = ν1 ∧ · · · ∧ νn

be the product measure.



2 Ultrametric Manifolds

Definition. A homeomorphism

τ : (C1, d1)× · · · × (Cn, dn)→ (C1, d1)× · · · × (Cm, dm)

is analytic, if it takes polydisks to polydisks, and for each
z ∈ (C1, d1)× · · · × (Cn, dn), the value

αij(z) = − log

 νi (Bρi (z))

νj

(
πj

(
τ
(
Bρ(z)

)))


is constant for
∥∥ρ∥∥

1
<<∞ with i = 1, . . . , n, j = 1, . . . ,m.

Here,
πk : (C1, d1)× · · · × (Cn, dn)→ (Ck , dk)

is projection onto the k-th factor.



2 Ultrametric Manifolds
In the case of overlap between an ultrametric n-chart φα and an
m-chart φβ, the sets

φα(Uα ∩ Uβ), φβ(Uα ∩ Uβ)

are disjoint unions of products of ultrametric Cantor sets.

Definition. We say that

ταβ : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

is locally analytic, if every z ∈ φα(Uα ∩ Uβ) has a clopen
neighbourhood C = (C1, d1) × · · · × (Cn, dn) such that ταβ
restricted to C is an analytic homeomorphism onto its image.

Obtain in the case m = n a family

dταβ(x) := eAαβ(x) ∈ GLn(R) ,

where for x ∈ Uα ∩ Uβ: Aαβ(x) = (αij(ταβ(x))i ,j=1,...,n ∈ Rn×n.



2 Ultrametric Manifolds

Definition. Two ultrametric charts

cα = (Uα, φα, dα,1, . . . , dα,nα), cβ = (Uβ, φβ, dβ,1, . . . , dβ,nβ )

of a locally compact local Cantor set X are compatible, if the
maps

φα(Uα ∩ Uβ)
ταβ // φβ(Uα ∩ Uβ)
τβα
oo

are locally analytic homeomorphisms. Two compatible charts
are C 0-compatible, if nα = nβ and

dταβ : X → GLn(R), x 7→ dταβ(x)

is continuous, in the case that Uα ∩ Uβ 6= ∅.



2 Ultrametric Manifolds

Definition. An ultrametric C 0-atlas A of a locally com-
pact local Cantor set X is a family of ultrametric charts cα,
α ∈ I , which are mutually C 0-compatible, and such that
{Uα | α ∈ I} is a cover of X . Two atlantes A,A′ are C 0-
compatible, if A ∪A′ is a C 0-atlas of X .

- An ultrametric C 0-atlas of X is full, if any ultrametric chart
C 0-compatible with any chart in A already belongs to A.

- C 0-compatibiblity of atlantes is an equivalence relation.

- Each equivalence class of C 0-compatible atlantes of X is readily
seen to contain a unique full atlas.

Definition. An ultrametric analytic C 0-manifold is a pair
(X ,A) with X a locally compact local Cantor set, and A a
full ultrametric C 0-atlas of X .



2 Ultrametric Manifolds

How to continue from here:

I Tangent bundle as a “mixed” kind of “manifold”!

I Vector fields on ultrametric manifolds via tangent spaces as
real vector spaces!

I Imitate the Laplace-Beltrami operator using local coordinate
Laplacians [Vladimirov-Pearson operators]!

I Imitate differential forms!

I See if all this works also for ultrametric manifolds whose local
dimension is not constant!

I Study the heat equation!

I Define general elliptic operators like pdo’s, but on ultrametric
manifolds, and do the same!
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