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ST gravity and solution-equivalent frames

Most general action for the scalar-tensor (ST) theories of gravity can be
written as (four functions defining the frame: A(®), B(®), V(®), a(P)) :

Sl @11 = 55 | "xv/=E[A(®)R — B(9)g"0, 60,0 ~ V()]
2 95 .
a( ) - _c matter 1
+ Smatter |:e g,uwX] ) T,ul/ \/_—g Sghv ( )
Then the corresponding field equations can be recast into the form:
A(®)G () — (VEVE — guDE)A(®) = =0, + kT (2)
A(P)R(g) + B'(9)(09)* + 2B(d)TEd — V' (d) = —2x%a/(®) T (3)

w + 1 equations, where n > 2 is a dimension of spacetime.

1L. Jarv, P. Kuusk, M. Saal, and O. Vilson, Phys. Rev. D 91 (2015)-024041.
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where (09)2 = g9, 9, and

=5, = B(9)9,90,® — 3 (B(©)(00) + V(®))g 4)

Sy

= —(99) B(®)uy u, — 5 (@)D + V(®))gyu

mimics a perfect fluid with velocity u, = 0,®//—(0®)?. The matter
stress-energy tensor is not conserved (chameleon mechanism) in general:

V. TH =d/(®) T o, (5)
where T = gt T,,,. For the case a = const, A = const

V, T =0=V,=%". (6)
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ST gravity and solution-equivalent frames

By applying conformal transformation and field re-definition 2

Buv = 627(¢)g;w, (7a)
d=rf(d) ie &=F(). (7b)
the solutions in some initial frame transform to solutions in a new one
A(®) = en=27®) 4(#(d)), (8a)
B(®) = eln—27(®) ((;’2)23(;?(5)) (8b)
d¥N2 o - d¥ dA do
~(n=1)(n-2)(Z5) A(f(¢))—2<n—1)ﬁ,m(ﬁ>),
V(®) = e OY(F(D)), (8¢)
&(®) = a(f(P)) +%(®) = a(F(®)) — 7(P). (8d)

We call such frames solution equivalent frames, where
5= —yiof, f=fL

2Solution for the metric does not depend on redefinition of ®:
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Remark We have a group action

(f,7) > (8uv, ) = (exp (27(P))guv, f 0 P) = (8w, ),
which extends to the action (A4, B,V,a) — (A, B,V, &) (where
f € Diff(R) and v € C*(R)) and _

(FA)o(fy)=(Fof 7+yof 1)
One can define the following (frame independent) invariants:
1. Zu(®) = 250,

_ V@)
2 Dvl®) = Gy

n—2)A(P)B(P)+(n—1)(A’(P))?
3 d\IJ:\/i( AG)EE IAE o,

We may introduce invariant metrics, remaining unchanged under a
conformal transformation:

EF : 2. = (A(®)7 2 g, (9a)
JF: g =e®g,,. (9b)
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f(R) versus Scalar-Tensor gravity

1
Selg] = 53 [ VEF(R)+ Smatrlgi ). (10)

Dynamically equivalent constrain system

Slgus ) = 55 | VR (FENR =)+ FE) + Snasrlgi: )
) )

by solving the constraint equation = = R. Introducing a scalar field
® = F/(Z) one obtains equivalent STT Jordan Frame action with a
non-dynamical scalar field

1
S[g,um . CD] = 22 /Q d"x+/ *g(ch — UF((D)) + Smatter(g/w,X) (12)

with the potential describing self-interaction of ®:
Ur(®) = R(®)® — F(R(®)), (13)

is the result of Legendre’ transformation. This is a special case of
Brans-Dickey action

1 [
Seplg, &) = %/nd /=g (OR — 22 ,00"0 —u(e)) . (18)
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Hybrid® metric-Palatini generalization
The action functional is given by

1 A~
Slguw, rz”] - 2k2 /Q d"xv/—g[QaR(g) + F(R(g,T))] + Smatter[guv» X]

(15)
where Q4 is a coupling constant and R(g,I") = g"”R,,(I) is a Palatini
Ricci scalar. It can be shown that we end up in purely metric STT (see
below)

Slew- ] = 5. /d”xr<(QA+d>) (g)+ﬁ

+ Smatter[g;wa X]~ (16)

0, PO P — UF(¢))

where wgp = —ﬁ is again 'patological’. Q4 = 0 give rise to Palatini
f(R) gravity.

3T. Harko, T. S. Koivisto, F. S. N. Lobo, G. J. Olmo, Phys. Rev. D 85 (2012)
084016; S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo, , Universe 1
(2015) 2, 199.
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Metric -Palatini-hybrid ST gravity®

Sl 0] = 55 | d'xV/=E[Ar(®)R(g) + Ax(®)R(e: )
B(® ) 9,08, — Q" (g, NC1(P)d,d (17)
— Q"(g,T)Ca(®)3, > — V(cb)] + Smatter[€* @ g, X1

The action depend on the non-metricities of a torsionless connection TI':
Qu= gaﬁvugaﬂ and Qu = _gaﬁvagﬂu , where R(g,T) = g"" Ry (I).

The case A2(®) = 0 corresponds to a purely metric while A;(®) = 0 purely
Palatini STT (see A. Kozak, AB., Eur.Phys.J.C 79 (2019)).
It is form invariant with respect to the following transformation*

g =g, & =Ff(0), (18a)
T0, =y +260,0,)72(®) — guvg™’ 973 (P) (18b)

A1 + Az # 0. In particular, A; = 0 gives purely Palatini case. In contrast

A = Cy = (C5 = Q provides pure metric formalism.
442 = 73 implies Weyl transformation of I'.
5AB, A. Kozak, JCAP 07 (2020) 003
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The solution equivalent frame functions transform accordingly as (for

Y1 =2 = 7v3,C1 = C2 = 0 reconstruct the metric case):
A (®) = " DRO) L (D)),  A(D) = 1) 4, (F($))
B(®) = e PO [BE@)(F(8)) + (0 — 1) (nA(F(B)5(8)(8) — Ax(F(8)) (
dAx(F())
do

— AoF(®)) (74(®))* — (74(®) + %5(P)) — 2
Aa(F(®)51(B)((B) + 54(8)) — (n — 2)Au(F(®)(41(P))?)
+ F(®) (CL(F())(2n%1(B) — 2(n + 1)¥4() + 2¥4(d))

~ Ca2(F(®)(254(®) — (n+3)%(®) + (n+ 1)35(8))]

2(3) = " IT@F(B)Ca(F(B)) — A(F(B)) ((n— 1)35(D) — %5()) }
V(®) = " OV(F (D)),
&(®) = a(F(®)) + ¥1(P)
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Invariant quantities can be generalized as well:

Ta(®) j:g; ,
ey V(P) @) V(®)
VO Gy O e
Ay (® A
7((®) e(n_zga ()¢) 72(9) e(n_§§a()¢) :
do
n— 1AL (®)] + (Za(®) + 1)[-4C3(P) + (n* — 5)C5(D)

+ (1 + 27 (@)
)C1L(®)C2(®) + 2(n — 1) A(®)(C2(P) — nC(P))]

—2(n*—n—4
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Varying with respect to all independent variables entering the action one
gets

Metric:
A1(®)Gpp(8) + A2(®)6uu (g, T) + (AY (@) + 25«») — C1(®) (a0 gpuy + ng)gw
— (A (®) + B(®) — C5(#))0 00,0 + (C2(®)¥ 1,8y — C1(@)gpr D)6 — AL (9)(VE, 0, — g0 T8)® (21)

1 1
+Qpac [;cz(w)s(“yaﬁ)g“ —Cy(®) (;g,wg“ﬁg*ﬁ — gug g + 5&5%@4) Joo® = 2Ty,

Connection:

o V= e -] -

(22)
_ _ / _ _ A
o [so(6) (A A gy (el o))
Az(®) Az(®)
Scalar field:
AR (®)R(g) + Ap(®)R(g, T) + B (®)gh" 8,98, ¢ + 2B(0)IE® + 2B(9)9,,9Qy, 0.5 (23)

1 —
x (;g“”g"fg - g"*‘gﬁ”) +C1(0)VE Q! + Ca(9)VE QM — V/(9) = —2x%a/ ()T .
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Embedding into metric STT

There is an on-shell dynamics preserving "projection" from more general
Palatini-hybrid frame (A1, A2, B,C1,C2,V, @) to the corresponding
metric one (A, B,V, a), where®

A(P) = A1 (D) + A(P).

B(o) = (n—2)Az(P)B(P) — (n — 1)(A3(P))* + 2A45(P)[C2(P) — nC1(®)]
(n —2)Ax(®)
(n? — 5)Ca(®)? — 4C1(®)2 +2(4 +n — n2)61(¢)62(¢))
(n=2)(n—1)Ax(®) ’

leaving the metric and the scalar field solutions unchanged.

The other two frame functions V(®), a(®P) remain the same.

SAB, A. Kozak, JCAP 07 (2020) 003; e-Print: 2003.02741 [gr-qc]
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Because the equations of motion admit the following generic solutions for
the connection:

« @ «
rW:{W} +2F1(P)50,0,)0 — Fo(®)gug®’ 050, (24)

and the non-metricity :

QU = Vag" =2 (Fi(®) - Fz(¢))58‘g”)p0p¢ +2F1(®)g"" 0a 9,

2C1 (®)+(n—3)Ca(P)+(n—1).A%( _2C1(9)—Ca(®)+AL(P)
where Fy(®) = =2 _A2(<D)(n2 -3~ and Fa(®) = = A2(®2)(n—2)2
Then by a swtable _choice of functions 72,73 one can obtained

transformed C; = = —Aj. It means that F1 = F> =0 and the
connection becomes Levi-Civita, i.e. non-metricity vanishes on shall.

Adopting Ehlers-Pirani-Schild (EPS) (1972 volume in honor J.L. Synge)’
idea one can use geodesics of the original connection to explain galactic
curves ( intergalactic DM) (see e.g. A. Wojnar, C. Sporea, AB, Galaxies 6
(2018) 3, 70, e-Print: 1804.09620 [gr-qc], Eur.Phys.J. C78 (2018) 4, 308;
e-Print: 1705.04131 [gr-qc]).

"Reprinted in GRG Golden Oldies 2012 (A. Tratman).

13/21



f(R) examples

| | A [ 5 [ Y [
metric ¢ 0 UF(¢’ - QA) 0
Palatini ¢ - Ur(®) 0
hybrid || Qa+® [ —2=3 Ur(®) 0

Table: JF metric SST frames for three cases of Q4 R + F(R) gravity.

where
Ur(®) = R(®)d — F(R(%)), (25)
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ST FLRW cosmology; n = 4
Substitution of FLRW metric (n = 4):

- 2 a(t)?
guv = diag (—N(t) T K2

T2 N2\ 22 aN |’

a

Useful choices: N(7) = a(7), N(7) = H(7).

Stress-energy tensor = barotropic perfect fluid (non-interacting
components) :

a(t)?r?, a(t)?r? sin? 9)

yields:

T;UJ = (p + P)Uuuu + PEuv » p=wp

with u* = (%,0,0,0).
Not conserved, in general, the stress-energy tensor is :

V., TH =d'(®)To" o,
is solved by (barotropic fluids p; = w;p;):
p(a, ®) = ZPO (2 3(1Hw) g(1-3w)a(®)



Field equations

One obtains a closed (over-determined) system of the second-order ODE
for two functions a(t), ®(t)

2 Kp(a®) | B®) io A, V(P)
=4y Taa®)® P Ae) T 2a(e) (31a)
. 2 _;{2 P(37 d)) B B(¢) +2A//(¢) L,
ST ) 24(@)  ° (31b)
V(o)  A(®) _
+ 5 4(0) ~ A0) (2H¢+¢) 7

(3(A' (@))% + 2A(P)B(P)) & = —3(3(A'(P))? + 2A(P)B(®))Hd
— ((A(P)B(®))' + 3A () A" (®)) d* + (2V(P) A (P) — V' (9)A(P)) (31c)
+1%(p = 3p)(a, @) [A'(®) — 20/(®)A(®)] .
which can solved and compared with LCDM model at least numerically,

after choosing required frame functions {A, B,V, a} and imposing initial
conditions that respect the zero Hamiltonian energy constraints (31a).
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Minisuperspace reformulation with chameleon mechanism

Suss[a, ] =—— a/t[l (f6aAa'2 — 622430 + a3Bd>2) — NViss |,
2K2 N
(32)
with
Viuss(a, @) = —6KaA(P) + a*V(P) + Vinateer (3, D) , (33)
where
Vinatter(3, ) = 2K2 a%p = 22 Z p,-,oa_3"""e(1_3""")a(¢) .
One gets MSS Lagrangian:
. 1
Lymss(N, x, x) = ﬁmjk(x)xka — NVuss(x) (34)
with A(6) 2,,4’( )
_ _[(—12aA(9) —622A/(P
m; = my(a, @) = <—6a2A’(¢) 22°B(®) ) ' (35)

8AB, A. Kozak, Phys.Rev.D 105 (2022) 4, 044011; e-Print: 2108.13324 [gr-qc]

8
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Varying w.r.t. lapse function provides zero-Hamiltonian energy
constraints (MSS Hamiltonian is conserved)

(5LM55 o 1

N = Wm,-jx"xf + N Vuss = 0, (36)

Which after choosing the gauge N = const = 1 reduces to the Friedman
type eq. :

A’ B 3K 1% Vinatter

3H? = 3T HO + — % - : 37
H AH * 2A a? oA 24 2334 (37)
Remaining equations (assuming det m # 0):
N 2,
x4 kafx - NX = —N°mY9; Vss, (38)

well suited for numerical calculations with MSS Levi-Civita connection

. 1 .
la = 5 M (Okmip + Oymip — Opimya) - (39)
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Imposing Cauchy data of LCDM type

In order to solve above system of the second order ODFs one needs to
impose the present day data (ag, ®o, 40, o), where 0 refers to the age of
the Universe, and ap = Ho being a Hubble constant after normalization
ap = 1. Remaining data (®g, ®) are constrained by the Hubble relation.
Assuming further that the scalar field has no dynamics at the present
epoch, i.e. g =0, one gets ACDM type relation

1=Q/\0+QK+2

1 -
a(1=3w)a(®o) _ .
.A((Do) ZQO,Ie —QA+QK+ZQO,I ’
! 1
r2 po,i V(o)
3HZ 6H2 A(do)
cosmological constant and ®q is a free parameter.
In such scenario the observed matter g ; differs from ’true’ baryonic
matter represented by a cosmic dust Qg qust by a factor %ﬁ"f)
imitating cosmic DM. The remaining terms

Qp = 6?{‘;(7% — %% + %(%)2 can be considered as a dynamical DE.

where Q; o = Q = 7% and Q) = could play a role of
0
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Summary

> A new class of scalar-tensor theories (STT) including a non-metricity
that unifies metric, Palatini and hybrid metric-Palatini gravitational
actions with non-minimal interaction is proposed and investigated
from the point of view of its consistency with generalized conformal
transformations. Generalized invariants are indicated.

» [t is also shown that every such theory can be represented on-shell
by a purely metric STT possessing the same solutions for metric and
scalar field. Therefore, a connection provides additional degrees of
freedom which can be used, according the EPS formalism, to imitate
intergalactic DM.

» We introduced minisuperspace formulation of ST FLRW cosmology
with perfect fluid non-minimally coupled to matter (chameleon
mechanism).

» An appropriate choice of Cauchy data allows to approximate LCD
era and can be used to explain DM-DE effects: cosmological DM,
and running "cosmological constant"
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HAPPY BIRTHDAY DEAR BRANCO !

Figure: Good health and many more to come ...

21/21



