Self-accelerating Scorer beams

Wei-Ping Zhong and Milivoj Belić

Shunde Polytechnic, China and TAMUQ, Qatar

NONLINEARITY, NONLOCALITY AND ULTRAMETRICITY BELGRADE, MAY 26-30 2025, SERBIA 1

Celebrating 80 years of Branko Dragovich

Summary: This talk is dedicated to honoring Branko Dragovich on his 80th birthday. I met Branko in 1981, when I joined the Institute of Physics in Belgrade and he was a young dynamic director of the Institute of Theoretical Physics there. Back then, the Institute of Physics was scattered across five different locations in the city, but once it was united under one roof in 1983, it was a smooth successful sailing from there!

Dear Branko, on this special occasion I wish you a very Happy Birthday and многая лета!

The talk iself explores the fascinating world of accelerating beams, with a focus on Airy and Scorer beams – a recent discovery by WP Zhong and M. Belic.

Outline

- Accelerating light beams?
- Quantum-mechanical Airy wave-packets
- Nonlinear Airy beams in optics
- Self-accelerating Scorer beams

Summary

Light travels in straight lines

Courtesy of D. Christodoulides

Euclid's Optics ~ 300 BC

Euclid's Geometry:

The Elements

Yet, can light bend ??

In arts - yes!CREOL - The College of Optics and Photonics In physics?

Can light bend ?? Sure!

Refraction

Negative refraction

Cloaking

But, can light accelerate?

Any problem with Einstein?

Or with QM?

Gravitational lensing

It can - in media!

CREOL - The College of Optics and Photonics

Also, in quant mech: Accelerating Airy wave

M.V. Berry and N. L. Balazs, "Nonspreading wave packets, Am. J. Phys. 47, 264 (1979)

Unique Airy wave-packet solution:

Free-particle Schrödinger equation
$$i\hbar \frac{\partial \psi}{\partial t} + \frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} = 0$$

$$\psi(x,t) = \operatorname{Ai} \left[\frac{B}{\hbar^{2/3}} \left(x - \frac{B^3 t^2}{4m^2} \right) \right] e^{(iB^3 t/2m\hbar)[x - (B^3 t^2/6m^2)]}.$$

Parabolic acceleration term

Non-diffracting self-accelerating

Airy wave-packet

Courtesy of Ady Arie

Then, from Quantum Mechanics to Optics:

X

$$i\hbar \frac{\partial \psi}{\partial t} + \frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} = 0$$

Free particle Schrödinger equation

Infinite energy wave packet

- Non-diffracting Airy
- Freely accelerating

Scaled paraxial wave equation

Finite energy beam

 $Ai(s)e^{as}$

- Nearly non-diffracting
- Freely accelerating

Berry and Balzas, *Am. J. Phys*, **47**, 264 (1979) Siviloglou, Broky, Dogariu, & Christodoulides, *Phys. Rev. Lett.* **99**, 213901 (2007)₈

Nondiffracting optical waves

2D

Airy beam in 1D

$$\psi(s,\xi) = Ai(s - \frac{\xi^2}{4}) \exp[i(\frac{s\xi}{2} - \frac{\xi^3}{12})]$$

Bessel beam

(Cylindrical coordinate)

Mathieu beam (Elliptic coordinate)

Parabolic beam (Parabolic coordinate)

Q: What is accelerating?

Sivilogiou et al., PRL (2007)

- > The only possible nondiffracting wave in 1D
- ➤ Self-healing property
- Transverse momentum (self-bending)

Courtesy of Z. Chen

Optical analog of projectile ballistics

The Airy beam moves on a parabolic trajectory very much like a projectile under the action of gravity!

Airy beam – a manifestation of caustic

<u>Caustic</u>: An <u>envelope</u> of <u>light rays</u> <u>reflected</u> or <u>refracted</u> by a curved surface or an object, or the <u>projection</u> of that envelope of rays on another surface.

In ray description, the rays are tangent to the parabolic line but do not cross it.

The Airy beam is a beam with curving parabolic trajectory, but the "center of mass" of the beam propagates along a straight line!

Curved caustics in everyday life

region III SB^+ causticobservation point

region II SB^+ region I

region IV

ray 1

ray 2

ray 2 xep x/W

Kaganovsky and Heyman, *Opt. Exp.* **18**, 8440 (2010)

Caustics are everywhere

Airy beams propagating in NL media

Equation

$$i\frac{\partial \psi}{\partial z} - i\frac{z}{2}\frac{\partial \psi}{\partial x} + \frac{1}{2}\frac{\partial^2 \psi}{\partial x^2} + \delta n\psi = 0.$$

Input beam

$$\psi(x) = A_1 \operatorname{Ai}[(x - B)] \exp[a(x - B)] + \exp(il\pi)A_2 \operatorname{Ai}[-(x + B)] \exp[-a(x + B)],$$

Single

Beam

Prop

tion, a=0 **Truncated** a = 0.2

Solitons!

Counter-accelerating Airy beams

- Kerr medium: Generation of solitons
- No acceleration!
- Upper row: In-phase (attraction)

Y. Zhang *et al*. *Appl. Sci.* 7, 341 (2017)

Lower row: Out-of-phase (repulsion)

Scorer beams: Inhomogeneous cousins of

Airy beams

Introduced by Richard Scorer in 1950

Equation Presumed solution
$$i\frac{\partial u}{\partial \xi} + \frac{1}{2}\frac{\partial^2 u}{\partial X^2} + \gamma V(\xi, X)u = 0, \quad u(\xi, X) = A(\xi, X)e^{\lambda(\xi, X)a + iB(\xi, X)}$$

Amplitude Decay factor $A(\xi,X) = \frac{F(\theta)}{\sqrt{w_0}}, \quad B(\xi,X) = k(\xi) + b(\xi)X + c(\xi)X^2, \quad \lambda(\xi,X) = X + \rho \xi^2$

Phase

Potential Scorer diff. eq. Proper Scorer function
$$V(\xi,X) = \frac{1}{2w_0^2 F}$$
 $\frac{\partial^2 F}{\partial \theta^2} - \theta F = -\frac{1}{\pi}$, $F(\theta) = Gi(\theta)$, $Gi(\theta) = \frac{1}{\pi} \int_0^\infty \sin\left(\theta t + \frac{1}{3}t^3\right) dt$

Recall Airy diff. eq. $\frac{\partial^2 F}{\partial \theta^2} - \theta F = \theta$ Zhong et al., PLA 528 (2024) 130023

A primer on Airy and Scorer functions

Airy diff equation

$$\frac{d^2 w}{dz^2} - z w = 0.$$

Solutions
$$\operatorname{Ai}(z) = \frac{1}{\pi} \int_0^\infty \cos\left(zt + \frac{1}{3}t^3\right) dt$$
,

Bi(z) =
$$\frac{1}{\pi} \int_0^\infty \sin(zt + \frac{1}{3}t^3) dt + \frac{1}{\pi} \int_0^\infty e^{zt - \frac{1}{3}t^3} dt$$

Scorer diff equations $w'' - zw = -1/\pi$ $w'' - zw = 1/\pi$

$$Gi(z) = \frac{1}{\pi} \int_0^\infty \sin\left(zt + \frac{1}{3}t^3\right) dt$$
 $Hi(z) = \frac{1}{\pi} \int_0^\infty e^{zt - \frac{1}{3}t^3} dt$

Counterpropagating Scorer beams

Scorer beam

Scorer beam
$$u(\xi, X) = \frac{1}{\sqrt{w_0}} Gi \left(\frac{4w_0^3 X - \xi^2 + 4w_0^3 ai\xi}{4w_0^4} \right) e^{aX - \frac{a}{2w_0^3} \xi^2 + i \left(-\frac{\xi^3}{12w_0^6} - \frac{\xi^2}{8w_0^3} + \frac{a^2\xi}{2} + \frac{\xi}{2w_0^3} X \right)}$$

$$0.3$$

Zhong et al.

Comm. Th. Phys. 77 (2025) 055501

Input beams:

$$u(\xi = 0, s) = \frac{1}{\sqrt{w_0}} \text{Gi}\left(\frac{\sigma s}{w_0}\right) e^{\sigma \lambda s}$$
 Direction:

Counterpropagating beams

Controlled self-bending of Scorer beams

Equation

One-parameter self-similar solution

$$i\frac{\partial u}{\partial \xi} + \frac{1}{2}\frac{\partial^{2} u}{\partial s^{2}} + qsu + \gamma V(\xi, s)u = 0 \quad u(\xi, s) = Gi\left(s - \frac{1 + 2q}{4}\xi^{2} + \alpha i\xi\right)e^{\alpha s - \frac{1 + q}{2}\alpha\xi^{2} + i\left(-\frac{1 + 3q + 2q^{2}}{12}\xi^{3} - \frac{\xi^{2}}{8} + \frac{1}{2}\alpha^{2}\xi + \frac{1 + 2q}{2}\xi s\right)}$$

$$u(\xi = 0, s) = Gi(s)e^{\alpha s}$$

Positive q

Compensated, q=-1/2

bending Scorer beams

Negative q

 $\Delta n = n_1 - n_0 < 0 \qquad q < 0$

Scorer beams in highly nonlocal media

Snyder-Mitchel model of accessible solitons

NL nonlocal equation Snyder-Mitchel linear eq.

$$i\frac{\partial u}{\partial \xi} + \frac{1}{2}\frac{\partial^2 u}{\partial s^2} + \chi(\xi)N(I)(\xi,s) + \gamma V(\xi,s)u = 0. \quad i\frac{\partial u}{\partial \xi} + \frac{1}{2}\frac{\partial^2 u}{\partial s^2} - \chi(\xi)s^2u + \gamma V(\xi,s)u = 0.$$

Accessible Scorer soliton

Decay factor

19

Zhong et al., Wave Motion 132 (2025) 103442

Summary

Introduced interacting Airy and Scorer beams

In linear media: Superposition and interference; no solitons

In NL-NL media: NL interference and generation of solitons

Depicted counter-accelerating Scorer beams in Kerr media

Demonstrated one-parameter bending family of Scorer beams

Presented accessible solitons based on Scorer beams

Thank you for your attention!