On Relations between the Real Kähler and the Complex Hilbert Spaces Quantum Mechanics

Irina Aref'eva

Steklov Mathemathical Institute, RAS

30 May, 2025

Nonlinearity, Nonlocality and Ultrametricity

Dragovich 80

Outlook:

Continuation of the previous talk

- Formulation of real QM in real Kähler space
- Example: real QM in real Kähler space \mathcal{K}^2

Outlook:

Continuation of the previous talk

- Formulation of real QM in real Kähler space
- Example: real QM in real Kähler space \mathcal{K}^2
- Main subtleties:
 - Tensor product
 - Degeneration of the spectrum

Mathematical notions are borrowed from the previous talk by I.Volovich

- ullet i) To a physical system one assigns a real Kähler space ${\cal K}$
 - its state is represented by vectors $\eta \in \mathcal{K}$, $g(\eta, \eta) = 1, g(\cdot, \cdot)$ an inner product in \mathcal{K} ,
 - or by a density matrix ρ

• ii) To the observable L corresponds the \mathcal{K} -Hermitian operator \mathcal{L} , which spectrum is observable

The spectral decomposition for \mathcal{L} :

$$\sum_{i=1}^{n} \lambda_{i} \mathcal{E}_{i} = \mathcal{L}, \quad \sum_{i=1}^{n} \mathcal{E}_{i} = \mathcal{I}, \quad \operatorname{rank}(\mathcal{E}_{i}) \geq 2$$

• iii) Born rule:

if we measure L in the normalized state η , the probability of obtaining result λ_i is

$$rac{g(\eta,\mathcal{E}_i\eta)}{\mathrm{rank}(\mathcal{E}_i)}$$

ullet iv) the Kähler space ${\mathcal K}$ corresponding to the composition of two systems ${\mathfrak N}$ and ${\mathfrak M}$ is

$$\mathcal{K}_{\mathfrak{N}} \underset{\mathcal{K}}{\otimes} \mathcal{K}_{\mathfrak{M}}$$

Some subtleties with \otimes

- v*) A compact Lie group \mathfrak{G} of internal symmetries is realized in the Kähler space \mathcal{K} by symplectic orthogonal representation $\mathcal{U}(\mathfrak{g}), \mathfrak{g} \in \mathfrak{G}$.
- vi*) time and space -symplectic orthogonal representation of the Galilean group

Examples of \mathbb{C}^n and \mathcal{K}^{2n} correspondence

\mathbb{C}^1 and \mathcal{K}^2 correspondence

- Real 2 × 2 symmetric matrices $\ell = \begin{pmatrix} s_1 & a \\ a & s_2 \end{pmatrix}$
- Complex structure $j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- K-Hermiticity $\ell j j\ell = 0$ implies: $a = 0, s_1 = s_2 \equiv s$ we left with $\ell_0 = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix}$ with equal e.v. $\lambda_{1,2} = s$
- ullet Two projectors on corresponding e.v.'s $P_1=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
 ight), \quad P_2=\left(egin{array}{cc} 0 & 0 \ 0 & 1 \end{array}
 ight), \quad jP_1-P_2j=0$
- The resolution of the identity

$$P_1 + P_2 = 1$$
, $s(P_1 + P_2) = \ell_0$.

\mathbb{C}^2 (qubit) and \mathcal{K}^4 correspondence

• General Hermitian matrix acting in \mathbb{C}^2

$$L=S+iA, \quad ext{where} \quad S=\left(egin{array}{cc} s_{11} & s_{12} \ s_{12} & s_{22} \end{array}
ight), \quad A=\left(egin{array}{cc} 0 & a \ -a & 0 \end{array}
ight)$$

 $s_{ik}, i = 1, 2 \text{ and } a \text{ are real}$

$$L = \left(\begin{array}{cc} s_{11} & s_{12} + ia \\ s_{12} - ia & s_{22} \end{array}\right)$$

• L has the following orthonormal eigenvectors V_{α} , $\alpha = 1, 3$

$$V_1 = n_- \left(egin{array}{c} rac{w_-(w_0+i)}{1+w_0^2} \ 1 \end{array}
ight), \quad V_2 = n_+ \left(egin{array}{c} rac{w_+(w_0+i)}{1+w_0^2} \ 1 \end{array}
ight)$$

Their e.v.'s are $\lambda_1 = \frac{1}{2}(-\kappa + s_{11} + s_{22}), \quad \lambda_2 = \frac{1}{2}(\kappa + s_{11} + s_{22})$

$$w_{\pm} \;\; = \;\; rac{\pm \kappa + s_{11} - s_{22}}{2a}, \quad w_0 = rac{s_{12}}{a}, \quad n_{\pm} = rac{\sqrt{1 + w_0^2}}{\sqrt{1 + w_{\pm}^2 + w_0^2}},$$

$$\kappa = \sqrt{4a^2 + s_{11}^2 - 2s_{11}s_{22} + 4s_{12}^2 + s_{22}^2},$$

From L to \mathcal{L}

• L on a 2-component complex vector Z

$$Z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 + ip_1 \\ x_2 + ip_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + i \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = X + iP$$

can be written as

$$Z' = LZ = X' + iP' = (S + iA)(X + iP) = SX - AP + i(AX + SP)$$
 and we have $X' = SX - AP$, $P' = AX + SP$. Or in 2-component notations $\begin{pmatrix} X' \\ P' \end{pmatrix} = \begin{pmatrix} S & -A \\ A & S \end{pmatrix} \begin{pmatrix} X \\ P \end{pmatrix}$

• \mathcal{L} on a 4-component real vectors $\begin{pmatrix} X \\ P \end{pmatrix}$

$$\mathcal{L} = \left(\begin{array}{cccc} s_{11} & s_{12} & 0 & -a \\ s_{12} & s_{22} & a & 0 \\ 0 & a & s_{11} & s_{12} \\ -a & 0 & s_{12} & s_{22} \end{array} \right).$$

From L to \mathcal{L}

According our scheme to the vector Z in \mathbb{C}^2 corresponds the vector in \mathbb{R}^4

$$Z = egin{pmatrix} x_1 + i p_1 \ x_2 + i p_2 \end{pmatrix} \Leftrightarrow \mathcal{Z} = egin{pmatrix} x_1 \ x_2 \ p_1 \ p_2 \end{pmatrix}$$

Since
$$LZ=Z'=inom{x_1'+ip_1'}{x_2'+ip_2'}, \qquad ext{and } x_i'=s_{ik}x_k-a_{ik}p_k, \ p_i'=a_{ik}x_k+s_{ik}p_k$$

$$\text{we get} \quad \mathcal{Z}' = \begin{pmatrix} x_1' \\ x_2' \\ p_1' \\ p_2' \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & 0 & -a \\ s_{12} & s_{22} & a & 0 \\ 0 & a & s_{11} & s_{12} \\ -a & 0 & s_{12} & s_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ p_1 \\ p_2 \end{pmatrix}$$

where $a_{12} = -a$ and $a_{21} = a$.

Eigenvectors of \mathcal{L}

Eigenvalues of the matrix \mathcal{L}_4 are $\lambda_1 = \lambda_3$, $\lambda_2 = \lambda_4$ where

$$\lambda_1 = \frac{1}{2}(-\kappa + s_{11} + s_{22}), \quad \lambda_2 = \frac{1}{2}(\kappa + s_{11} + s_{22})$$

• The two first orthogonal eigenvectors corresponding to eigenvalues λ_1 and λ_2 are

$$\mathcal{V}_1 = \gamma(V_1) = n_- \gamma \left(egin{array}{c} rac{w_-(w_0+i)}{1+w_0^2} \ 1 \end{array}
ight) = n_- \left(egin{array}{c} w_0
ho_- \ 1 \
ho_- \ 0 \end{array}
ight),$$

$$\mathcal{V}_2 \hspace{0.2cm} = \hspace{0.2cm} \gamma(V_2) = n_+ \gamma \left(egin{array}{c} rac{w_+(w_0+i)}{1+w_0^2} \ 1 \end{array}
ight) = n_+ \left(egin{array}{c} w_0
ho_+ \ 1 \
ho_+ \ 0 \end{array}
ight),$$

where

$$\rho_{\pm} = \frac{w_{\pm}}{(1 + w_0^2)}$$

Eigenvectors of \mathcal{L}

• \mathcal{V}_3 and \mathcal{V}_4 can be obtained by acting of the complex operator \mathcal{J} on \mathcal{V}_1 and \mathcal{V}_2 , respectively,

$$\mathcal{V}_3 = \mathcal{J} \, \mathcal{V}_1, \quad \mathcal{V}_4 = \mathcal{J} \, \mathcal{V}_2,$$

Therefore, the spectrum is double degenerated

$$\begin{aligned} (\mathcal{L} - \lambda_1) \mathcal{V}_1 &= 0 & (\mathcal{L} - \lambda_2) \mathcal{V}_2 = 0 \\ (\mathcal{L} - \lambda_1) \mathcal{V}_3 &= 0, & (\mathcal{L} - \lambda_2) \mathcal{V}_4 = 0. \end{aligned}$$

These properties follow immediately from $\mathcal{J} = \mathcal{JL}$.

Vectors \mathcal{V}_i , i = 1, ...4 are orthonormal

Spectral decomposition for \mathcal{L}

Defining
$$\mathcal{P}_1 = \mathcal{V}_1 \otimes \mathcal{V}_1;$$
 $\mathcal{P}_3 = -\mathcal{J}\mathcal{P}_1\mathcal{J}$
 $\mathcal{P}_2 = \mathcal{V}_2 \otimes \mathcal{V}_2;$ $\mathcal{P}_4 = -\mathcal{J}\mathcal{P}_2\mathcal{J}$

we get the following spectral decomposition

$$\sum_{i=1}^4 \lambda_i \mathcal{P}_i = \mathcal{L}_4, \qquad \sum_{i=1}^4 \mathcal{P}_i = \mathcal{I}_4$$

here \mathcal{I}_4 is the unit 4×4 matrix.

Relations between U(2) rotations in \mathbb{C}^2 and $O(4) \cap Sp(4)$ in \mathcal{K}^4

$$G_1 = egin{pmatrix} 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & -1 & 0 \end{pmatrix}, \quad G_2 = egin{pmatrix} 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}, \ G_3 = egin{pmatrix} 0 & 0 & 0 & -1 \ 0 & 0 & 1 & 0 \ 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & -1 & 0 \end{pmatrix}, \quad G_4 = egin{pmatrix} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & -1 & 0 \end{pmatrix}.$$

These generators span the Lie algebra of $O(4) \cap Sp(4)$.

Relations between U(2) rotations in \mathbb{C}^2 and $O(4) \cap Sp(4)$ in \mathcal{K}^4

These generators possess the following properties:

- Skew-Symmetry: All generators satisfy $G_i^T = -G_i$, ensuring their membership in $\mathfrak{o}(4)$.
- Preservation of the Symplectic Form: For each G_i , the condition $G_i J = J G_i$ holds, where $\mathcal{J} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$, guaranteeing membership in $\mathfrak{sp}(4)$.
- Isomorphism with U(2):
 - Generators G_1, G_2, G_3 correspond to SU(2)
 - Generator G_4 corresponds to U(1), note that $G_2 = -\mathcal{J}$

Tensor Products on Kahler spaces

To define the tensor product of two linear vector spaces \mathcal{V}_1 and \mathcal{V}_2 it suffices to define the tensor product on elements of bases

$$\ell_A \otimes \ell_B = \ell_{AB}$$

In $\mathbb{R}^{2n} = \mathbb{R}^n \oplus \mathbb{R}^N$ there is a basis

$$\{\ell_A, A = 1, ... 2n\} = \{e_a|+\rangle, h_a|-\rangle, a = 1, ... N\},$$

as noted above we take $h_a = e_a$. Therefore the basis ℓ_{AB} in term of $e_a |\pm\rangle$ can be parametrize as

$$\ell_{AB} = e_a |\pm\rangle \otimes e_b |\pm\rangle = e_a \otimes e_b \otimes |i\rangle \otimes |j\rangle, \qquad (7)$$

$$A, B = 1, \dots, 2n, a, b = 1, \dots, i, j = \pm$$

Tensor Product $\underset{\mathbb{R}}{\otimes}$ on Kähler Spaces

Denoting $\binom{q_1}{p_1} = \eta_1$, $\binom{q_2}{p_2} = \eta_2$, we consider the tensor product in the sense of (7) that is indicated as $\underset{\mathbb{R}}{\otimes}$

$$egin{aligned} \eta_1 & \otimes \eta_2 = inom{q_1}{p_1} \otimes inom{q_2}{p_2} \ & = \sum_a \left(q_{1a}e_a|+
angle + p_{1a}e_a|-
angle
ight) \otimes igwedge \sum_b \left(q_{2b}e_b|+
angle + p_{2b}e_b|-
angle
ight) \ & = \sum_{a,b} \left(q_{1a}q_{2b}|+
angle \otimes |+
angle + p_{1a}q_{2b}|-
angle \otimes |+
angle + q_{1a}p_{2b}|+
angle \otimes |-
angle \ & + p_{1a}p_{2b}|-
angle \otimes |-
angle
ight) \otimes e_a \otimes e_b \end{aligned}$$

Tensor Product \otimes on Kähler Spaces

The scalar product and the symplectic form of two vectors in the form $\eta_1 \otimes \eta_2$ are given by the formula

$$g\left(\eta_{1} \underset{\mathbb{R}}{\otimes} \eta_{2}, \chi_{1} \underset{\mathbb{R}}{\otimes} \chi_{2}\right) = g\left(\eta_{1}, \chi_{1}\right) \cdot g(\eta_{2}, \chi_{2})$$

$$\omega\left(\eta_{1} \underset{\mathbb{R}}{\otimes} \eta_{2}, \chi_{1} \underset{\mathbb{R}}{\otimes} \chi_{2}\right) = \omega\left(\eta_{1}, \chi_{1}\right) \cdot g(\eta_{2}, \chi_{2}) + g\left(\eta_{1}, \chi_{1}\right) \cdot \omega(\eta_{2}, \chi_{2})$$

Tensor Product \otimes on Kahler Spaces

$$\eta_1 \underset{\mathcal{K}}{\otimes} \eta_2 \hspace{2mm} = \hspace{2mm} \begin{pmatrix} q_1 \\ p_1 \end{pmatrix} \underset{\mathcal{K}}{\otimes} \begin{pmatrix} q_2 \\ p_2 \end{pmatrix} = \sum_{a,b} \begin{pmatrix} q_{1a}q_{2b} - p_{1a}p_{2b} \\ q_{1a}p_{2b} + p_{1a}q_{2b} \end{pmatrix} e_a \otimes e_b$$

Comparing \bigotimes and \bigotimes we get

$$\eta_1 \underset{\mathcal{K}}{\otimes} \eta_2 = \mathop{\mathbb{P}} \eta_1 \underset{\mathop{\mathbb{R}}}{\otimes} \eta_2$$

$$\mathbb{P} = \left[|+\rangle \left(\langle +| \otimes \langle +| - \langle -| \otimes \langle +| \right) + |-\rangle \left(\langle +| \otimes \langle -| + \langle -| \otimes \langle +| \right) \right] \right]$$

Comparison of tensor product $\underset{\mathcal{K}}{\otimes}$ on Hilbert space \mathbb{C}^n and $\underset{\mathcal{K}}{\otimes}$ on \mathcal{K}^{2n}

In \mathbb{C}^N there is a basis $\{e_a, a=1,...N\}$ and the tensor product of two element $\psi = \sum_a (q_{1a} + ip_{1a})e_a$ and $\phi = \sum_b (q_{2b} + ip_{2b})e_b$ is

$$\psi \mathop{\otimes}_{\mathbb{C}} \phi = \sum_{a,b} \Big(q_{1a} q_{2b} - p_{1a} p_{2b} + i (q_{1a} p_{2b} + p_{1a} q_{2b}) \Big) e_a \mathop{\otimes} e_b$$

Full agreement!

Conclusion

• Formulation of real QM in real Kähler space and proof of the equivalence of real Kähler QM to QM in Hilbert space are given