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Outlook:
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Formulation of real QM in real Kähler space

Example: real QM in real Kähler space K2

Main subtleties:

Tensor product

Degeneration of the spectrum
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Quantum Mechanics
in Real Kähler Space

Mathematical notions are borrowed
from the previous talk by I.Volovich

i) To a physical system one assigns
a real Kähler space K

its state is represented by vectors η ∈ K,
g(η, η) = 1, g(·, ·) - an inner product in K,

or by a density matrix ρ
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Quantum Mechanics
in Real Kähler Space

ii) To the observable L corresponds
the K-Hermitian operator L,

which spectrum is observable

The spectral decomposition for L :∑n
i=1 λiEi = L,

∑n
i=1 Ei = I, rank(Ei) ≥ 2
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Quantum Mechanics
in Real Kähler Space

iii) Born rule:

if we measure L in the normalized state η,

the probability of obtaining result λi is

g(η, Eiη)
rank(Ei)
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Quantum Mechanics
in Real Kähler Space

iv) the Kähler space K corresponding to

the composition of two systems N and M is

KN ⊗
K

KM

Some subtleties with ⊗
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Quantum Mechanics
in Real Kähler Space

v∗) A compact Lie group G of internal
symmetries is realized in the Kähler space K
by symplectic orthogonal representation
U(g), g ∈ G.

vi∗) time and space -symplectic orthogonal
representation of the Galilean group
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Examples of Cn and K2n

correspondence
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C1 and K2 correspondence

Real 2 × 2 symmetric matrices ℓ =
(
s1 a
a s2

)
Complex structure j =

(
0 −1
1 0

)
K-Hermiticity ℓj − jℓ = 0 implies: a = 0, s1 = s2 ≡ s

we left with ℓ0 =

(
s 0
0 s

)
with equal e.v. λ1,2 = s

Two projectors on corresponding e.v.’s

P1 =

(
1 0
0 0

)
, P2 =

(
0 0
0 1

)
, jP1 − P2j = 0

The resolution of the identity

P1 + P2 = 1, s(P1 + P2) = ℓ0.
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C2 (qubit) and K4 correspondence
General Hermitian matrix acting in C2

L = S + iA, where S =

(
s11 s12
s12 s22

)
, A =

(
0 a
−a 0

)
sik, i = 1, 2 and a are real

L =

(
s11 s12 + ia

s12 − ia s22

)
L has the following orthonormal eigenvectors Vα, α = 1, 3

V1 = n−

(
w−(w0+i)

1+w2
0

1

)
, V2 = n+

(
w+(w0+i)

1+w2
0

1

)
Their e.v.’s are λ1 = 1

2
(−κ+ s11 + s22), λ2 = 1

2
(κ+ s11 + s22)

w± =
±κ+ s11 − s22

2a
, w0 =

s12

a
, n± =

√
1 + w2

0√
1 + w2

± + w2
0

,

κ =
√

4a2 + s211 − 2s11s22 + 4s212 + s222,

L V1 = λ1V1, (1)
LV2 = λ2V2 (2)

Here

w± =
±κ+ s11 − s22

2a
, w0 =

s12

a
, n± =

√
1 + w2

0√
1 + w2

± + w2
0

,(3)

κ =
√

4a2 + s211 − 2s11s22 + 4s212 + s222, (4)

and eigenvalues are

λ1 =
1

2
(−κ+ s11 + s22), (5)

λ2 =
1

2
(κ+ s11 + s22). (6)
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From L to L
L on a 2-component complex vector Z

Z =

(
z1
z2

)
=

(
x1 + ip1
x2 + ip2

)
=

(
x1

x2

)
+ i

(
p1
p2

)
= X + iP

can be written as

Z′ = LZ = X′+iP ′ = (S+iA)(X+iP ) = SX−AP+i(AX+SP )

and we have X′ = SX −AP, P ′ = AX + SP .

Or in 2-component notations
(
X′

P ′

)
=

(
S −A
A S

) (
X
P

)
L on a 4-component real vectors

(
X
P

)

L =


s11 s12 0 −a
s12 s22 a 0
0 a s11 s12
−a 0 s12 s22

 .
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From L to L
According our scheme to the vector Z in C2 corresponds the
vector in R4

Z =

(
x1 + ip1
x2 + ip2

)
⇔ Z =


x1

x2

p1
p2


Since LZ = Z′ =

(
x′
1 + ip′1
x′
2 + ip′2

)
, and x′

i = sikxk − aikpk,

p′i = aikxk + sikpk

we get Z′ =


x′
1

x′
2

p′1
p′2

 =


s11 s12 0 −a
s12 s22 a 0
0 a s11 s12
−a 0 s12 s22



x1

x2

p1
p2


where a12 = −a and a21 = a.
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Eigenvectors of L
Eigenvalues of the matrix L4 are λ1 = λ3, λ2 = λ4 where

λ1 =
1

2
(−κ+ s11 + s22), λ2 =

1

2
(κ+ s11 + s22)

The two first orthogonal eigenvectors corresponding to
eigenvalues λ1 and λ2 are

V1 = γ(V1) = n−γ

(
w−(w0+i)

1+w2
0

1

)
= n−


w0ρ−

1
ρ−
0

 ,

V2 = γ(V2) = n+γ

(
w+(w0+i)

1+w2
0

1

)
= n+


w0ρ+

1
ρ+
0

 ,
where

ρ± =
w±

(1 + w2
0)
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Eigenvectors of L

V3 and V4 can be obtained by acting of the complex operator J
on V1 and V2, respectively,

V3 = J V1, V4 = J V2,

Therefore, the spectrum is double degenerated

(L − λ1)V1 = 0 (L − λ2)V2 = 0

(L − λ1)V3 = 0, (L − λ2)V4 = 0.

These properties follow immediately from J = JL .

Vectors Vi, i = 1, ...4 are orthonormal
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Spectral decomposition for L

Defining P1 = V1 ⊗ V1; P3 = −JP1J
P2 = V2 ⊗ V2; P4 = −JP2J

we get the following spectral decomposition

4∑
i=1

λiPi = L4,
4∑
i=1

Pi = I4

here I4 is the unit 4 × 4 matrix.
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Relations between U(2) rotations in
C2 and O(4) ∩ Sp(4) in K4

G1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , G2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

G3 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , G4 =


0 −1 0 0
1 0 0 1
0 0 0 1
0 0 −1 0

 .
These generators span the Lie algebra of O(4) ∩ Sp(4).
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Relations between U(2) rotations in
C2 and O(4) ∩ Sp(4) in K4

These generators possess the following properties:

Skew-Symmetry: All generators satisfy GT
i = −Gi, ensuring

their membership in o(4).

Preservation of the Symplectic Form: For each Gi, the condition

GiJ = JGi holds, where J =

(
0 I
−I 0

)
, guaranteeing

membership in sp(4).

Isomorphism with U(2):

Generators G1, G2, G3 correspond to SU(2)

Generator G4 corresponds to U(1), note that
G2 = −J
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Tensor Products on Kahler spaces
To define the tensor product of two linear vector spaces V1

and V2 it suffices to define the tensor product on elements
of bases

ℓA ⊗ ℓB = ℓAB

In R2n = Rn ⊕ RN there is a basis

{ℓA, A = 1, ...2n} = {ea|+⟩, ha|−⟩, a = 1, ...N},

as noted above we take ha = ea. Therefore the basis ℓAB in
term of ea|±⟩ can be parametrize as

ℓAB = ea|±⟩ ⊗ eb|±⟩ = ea ⊗ eb ⊗ |i⟩ ⊗ |j⟩, (7)
A,B = 1, , , 2n, a, b = 1, ...n, i, j = ±
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Tensor Product ⊗
R

on Kähler Spaces

Denoting
(
q1
p1

)
= η1,

(
q2
p2

)
= η2, we consider the tensor product in

the sense of (7) that is indicated as ⊗
R

η1 ⊗
R
η2 =

(
q1
p1

)
⊗
R

(
q2
p2

)
=
∑
a

(q1aea|+⟩ + p1aea|−⟩) ⊗
R

∑
b

(q2beb|+⟩ + p2beb|−⟩)

=
∑
a,b

(
q1aq2b |+⟩ ⊗ |+⟩ + p1aq2b|−⟩ ⊗ |+⟩ + q1ap2b |+⟩ ⊗ |−⟩

+p1ap2b|−⟩ ⊗ |−⟩
)
⊗ ea ⊗ eb
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Tensor Product ⊗
R

on Kähler Spaces

The scalar product and the symplectic form of two vectors in the
form η1 ⊗

R
η2 are given by the formula

g

(
η1 ⊗

R
η2, χ1 ⊗

R
χ2

)
= g (η1, χ1) · g(η2, χ2)

ω

(
η1 ⊗

R
η2, χ1 ⊗

R
χ2

)
= ω (η1, χ1) · g(η2, χ2) + g (η1, χ1) · ω(η2, χ2)
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Tensor Product ⊗
K

on Kahler Spaces

η1 ⊗
K
η2 =

(
q1
p1

)
⊗
K

(
q2
p2

)
=
∑
a,b

(
q1aq2b − p1ap2b
q1ap2b + p1aq2b

)
ea ⊗ eb

Comparing ⊗
K

and ⊗
R

we get

η1 ⊗
K
η2 = P η1 ⊗

R
η2

P =
[
|+⟩

(
⟨+| ⊗ ⟨+| − ⟨−| ⊗ ⟨+|

)
+ |−⟩

(
⟨+| ⊗ ⟨−| + ⟨−| ⊗ ⟨+|

)]
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Comparison of tensor product ⊗
C

on

Hilbert space Cn and ⊗
K

on K2n

In CN there is a basis {ea, a = 1, ...N} and the tensor product of two
element ψ =

∑
a(q1a + ip1a)ea and ϕ =

∑
b (q2b + ip2b) eb is

ψ ⊗
C
ϕ =

∑
a,b

(
q1aq2b − p1ap2b + i(q1ap2b + p1aq2b)

)
ea ⊗ eb

Full agreement!

Irina Aref’eva Real Kähler Quantum Mechanics 30 May, 2025 21 / 22



Conclusion

Formulation of real QM in real Kähler space
and proof of the equivalence of real Kähler
QM to QM in Hilbert space are given
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